Skip to main content
Log in

An Analytical Threshold Voltage Model of Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFETs with Back-Gate Control

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents an analytical threshold voltage model for back-gated fully depleted (FD), recessed-source drain silicon-on-insulator metal-oxide-semiconductor field-effect transistors (MOSFETs). Analytical surface potential models have been developed at front and back surfaces of the channel by solving the two-dimensional (2-D) Poisson’s equation in the channel region with appropriate boundary conditions assuming a parabolic potential profile in the transverse direction of the channel. The strong inversion criterion is applied to the front surface potential as well as on the back one in order to find two separate threshold voltages for front and back channels of the device, respectively. The device threshold voltage has been assumed to be associated with the surface that offers a lower threshold voltage. The developed model was analyzed extensively for a variety of device geometry parameters like the oxide and silicon channel thicknesses, the thickness of the source/drain extension in the buried oxide, and the applied bias voltages with back-gate control. The proposed model has been validated by comparing the analytical results with numerical simulation data obtained from ATLAS™, a 2-D device simulator from SILVACO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Colinge, Rom. J. Inf. Sci. Technol. 11, 3 (2008).

    Google Scholar 

  2. K.K. Young, IEEE Trans. Electron Devices 36, 399 (1989).

    Article  Google Scholar 

  3. V.P. Trivedi and J.G. Fossum, IEEE Trans. Electron Devices 50, 2095 (2003).

    Article  Google Scholar 

  4. A. Chaudhry and M.J. Kumar, IEEE Trans. Device Mater. Reliab. 4, 99 (2004).

    Article  Google Scholar 

  5. C.F. Beranger, S. Denorme, P. Perreau, C. Buj, O. Faynot, F. Andrieu, L. Tosti, S. Barnola, T. Salvetat, X. Garros, M. Cassé, F. Allain, N. Loubet, L. Pham-Nguyen, E. Deloffre, M. Gros-Jean, R. Beneyton, C. Laviron, M. Marin, C. Leyris, S. Haendler, F. Leverd, P. Gouraud, P. Scheiblin, L. Clement, R. Pantel, S. Deleonibus, and T. Skotnicki, Solid State Electron 53, 730 (2009).

    Article  Google Scholar 

  6. M. Noguchi, T. Numata, Y. Mitani, T. Shino, S. Kawanaka, Y. Oowaki, and A. Toriumi, IEEE Electron Device Lett 22, 32 (2001).

    Article  Google Scholar 

  7. M. Chan, F. Assaderaghi, S.A. Parke, and C. Hu, IEEE Electron Device Lett 15, 22 (1994).

    Article  Google Scholar 

  8. C. Ahn, W. Cho, K. Im, J. Yang, I. BaekI, S. Lee, and S. Baek, (U.S. Patent) US20060131648 A1 [2006-06-22].

  9. H. I. Hanafi, D. C. Boyd, K. K. Chan, W. Natzle, and L. Shi, (U.S. Patent) 6841831 B2 [2005-01-11].

  10. B. Svilicic, V. Jovanovic’, and T. Suligoj, Solid State Electron 53, 540 (2009).

    Article  Google Scholar 

  11. G.K. Saramekala, A. Santra, S. Dubey, S. Jit, and P.K. Tiwari, Superlattices Microstruct. 60, 580 (2013).

    Article  Google Scholar 

  12. A. Kumar and P.K. Tiwari, Solid State Electron 95, 52 (2014).

    Article  Google Scholar 

  13. G.K. Saramekala, S. Dubey, and P.K. Tiwari, Chin. Phys. B 24, 108505-1 (2015).

    Google Scholar 

  14. K.R. Han, B.K. Choi, H.I. Kwoni, and J.H. Lee, Jpn. J. Appl. Phys. 47, 4385 (2008).

    Article  Google Scholar 

  15. Y. Yang, S. Markov, and B. Cheng, IEEE Trans. Electron Devices 60, 739 (2013).

    Article  Google Scholar 

  16. I. Yang, C. Vieri, A. Chandraksan, and D. Antoniadis, Proceedings of IEDM (1995), p. 877. doi:10.1109/IEDM.1995. 499356.

  17. T. Numata, M. Noguchi, and S. Takagia, Solid State Electron 48, 979 (2004).

    Article  Google Scholar 

  18. A. Majumdar, Z. Ren, S.J. Koester, and W. Haensch, IEEE Trans. Electron Devices 56, 2270 (2009).

    Article  Google Scholar 

  19. A. Biswas and S. Bhattacherjee, Microelectron. Reliab. 53, 363 (2013).

    Article  Google Scholar 

  20. N. Fasarakis, T. Karatsori, D.H. Tassis, C.G. Theodorou, F. Andrieu, O. Faynot, G. Ghibaudo, and C.A. Dimitriadis, IEEE Trans. Electron Devices 61, 969 (2014).

    Article  Google Scholar 

  21. S. Khandelwal, Y.S. Chauhan, D.D. Lu, S. Venugopalan, M.A.U. Karim, A.B. Sachid, B.-Y. Nguyen, O. Rozeau, O. Faynot, A.M. Niknejad, and C.C. Hu, IEEE Trans. Electron Devices 59, 2026 (2012).

    Google Scholar 

  22. Silvaco International, ATLAS User’s Manual (Santa Clara: Silvaco International, 2012).

    Google Scholar 

  23. A. Ortiz-Conde, F.J. Garcia Sanchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, Microelectron. Reliab. 42, 583 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Dr. Pramod Kumar Tiwari, acknowledges financial support received from the Science and Engineering Research Board (SERB), Department of Science and Technology, Ministry of Human Resource and Development, Government of India, under a young scientist research grant. The Grant No. is SB/FTP/ETA-415/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saramekala, G.K., Tiwari, P.K. An Analytical Threshold Voltage Model of Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFETs with Back-Gate Control. J. Electron. Mater. 45, 5367–5374 (2016). https://doi.org/10.1007/s11664-016-4752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4752-6

Keywords

Navigation