Journal of Electronic Materials

, Volume 45, Issue 10, pp 5321–5333 | Cite as

Graphene Oxide/Silver Nanohybrid as Multi-functional Material for Highly Efficient Bacterial Disinfection and Detection of Organic Dye

  • Le Thi Tam
  • Ngo Xuan Dinh
  • Nguyen Van Cuong
  • Nguyen  Van Quy
  • Tran Quang Huy
  • Duc-The Ngo
  • Kristian Mølhave
  • Anh-Tuan Le


In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo-physical evidence explaining the antibacterial behavior of GO-Ag nanohybrid against Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus in light of ultrastructural damage analyses and Ag1+ ions release rate onto the cells/medium. A further understanding of the mode of antimicrobial action is very important for designing and developing advanced antimicrobial systems. Secondly, we have also demonstrated that the GO-Ag nanohybrid material could be used as a potential surface enhanced Raman scattering (SERS) substrate to detect and quantify organic dyes, e.g., methylene blue (MB), in aqueous media. Our findings revealed that the GO-Ag hybrid system showed better SERS performance of MB detection than that of pure Ag-NPs. MB could be detected at a concentration as low as 1 ppm. The GO-Ag-based SERS platform can be effectively used to detect trace concentrations of various types of organic dyes in aqueous media. With the aforementioned properties, the GO-Ag hybrid system is found to be very promising as a multi-functional material for advanced biomedicine and environmental monitoring applications.


GO-Ag nanohybrid bactericidal electron microscopy  MB detection surface enhanced Raman scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2016_4734_MOESM1_ESM.pptx (1.3 mb)
Supplementary material 1 (PPTX 1305 kb)


  1. 1.
    A. Oduola, eds. Global Report for Research on Infectious Diseases of Poverty. World Health Organization; 2012.Google Scholar
  2. 2.
    K.S. Kaye and D. Kaye, Curr. Infect. Dis. Rep. 2, 391 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Rai, eds., Nano-Antimicrobials: Progress and Prospects (Berlin: Springer, 2012).Google Scholar
  4. 4.
    F. Marinelli and O. Genilloud, eds., Antimicrobial: New and Old Molecules in the Fight Against Multi-Resistant Bacteria (Berlin: Springer, 2014).Google Scholar
  5. 5.
    M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv. 27, 76 (2009).CrossRefGoogle Scholar
  6. 6.
    Q.H. Tran, V.Q. Nguyen, and A.T. Le, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013).CrossRefGoogle Scholar
  7. 7.
    S. Chernousova and M. Epple, Angew. Chem. Int. Ed. 52, 1636 (2013).CrossRefGoogle Scholar
  8. 8.
    M.J. Hajipour, K.M. Ashkarran, A.A. de Aberasturi, D.J. de Larramendi, I.R. Rojo, T. Serpooshan, W.J. Parak, and M. Mahmoudi, Trends Biotechnol. 30, 499 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Yu, Y. Yin, and J. Liu, Environ. Sci. Process. Impacts. 15, 78 (2013).CrossRefGoogle Scholar
  10. 10.
    D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).CrossRefGoogle Scholar
  11. 11.
    D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).CrossRefGoogle Scholar
  12. 12.
    S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, ACS Nano 5, 6971 (2011).CrossRefGoogle Scholar
  13. 13.
    W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, and C. Fan, ACS Nano 4, 4317 (2010).CrossRefGoogle Scholar
  14. 14.
    W. Ping, X.C. Zhang, J.P. Li, Y. Lu, H.H. Li, Y.N. Ma, W.D. Wang, and S.H. Yu, J. Mater. Chem. 21, 4593 (2011).CrossRefGoogle Scholar
  15. 15.
    C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi, K. Wang, and D. Cui, Biomaterials 34, 3882 (2013).CrossRefGoogle Scholar
  16. 16.
    E.K. Jeon, E. Seo, E. Lee, W. Lee, M.K. Um, and B.S. Kim, Chem. Commun. 49, 3392 (2013).CrossRefGoogle Scholar
  17. 17.
    S. Gurunathan, J.W. Han, J.H. Park, E. Kim, Y.J. Choi, D.N. Kwon, and J.H. Kim, Int. J. Nanomed. 10, 6257 (2015).CrossRefGoogle Scholar
  18. 18.
    H.L. Jun, W.Y. Xu, T.J. Guo, W. Yao, L.J. Xian, J.J. Qing, and W. Wei, Int. J. Electrochem. Sci. 11, 398 (2016).Google Scholar
  19. 19.
    N.X. Dinh, D.T. Chi, N.T. Lan, H. Lan, H.V. Tuan, N.V. Quy, V.N. Phan, T.Q. Huy, and A.T. Le, Appl. Phys. A 119, 85 (2015).CrossRefGoogle Scholar
  20. 20.
    M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, and P. Sengupta, Colloids Surf. B Biointerface 83, 16 (2011).CrossRefGoogle Scholar
  21. 21.
    Q. Bao, D. Zhang, and P. Qi, J. Colloid Interface Sci. 360, 463 (2011).CrossRefGoogle Scholar
  22. 22.
    S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, and R. Rahman, Nanoscale Res. Lett. 7, 541 (2012).CrossRefGoogle Scholar
  23. 23.
    V.H. Nguyen, B.K. Kim, Y.L. Jo, and J.J. Shim, J. Supercrit. Fluids 72, 28 (2012).CrossRefGoogle Scholar
  24. 24.
    M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia, A.B. Deshmukh, M.V. Shelke, P. Sengupta, S. Szunerits, and R. Boukherroub, Colloids Surf. B Biointerface 105, 128 (2013).CrossRefGoogle Scholar
  25. 25.
    J.D. Kim, H. Yun, G.C. Kim, C.W. Lee, and H.C. Choi, Appl. Surf. Sci. 283, 227 (2013).CrossRefGoogle Scholar
  26. 26.
    A.C.M. Moraes, B.A. Lima, A.F. Faria, M. Brocchi, and O.L. Alves, Int. J. Nanomed. 10, 6847 (2015).CrossRefGoogle Scholar
  27. 27.
    Z. Zhu, M. Su, L. Ma, L. Ma, D. Liu, and Z. Wang, Talanta 117, 449 (2013).CrossRefGoogle Scholar
  28. 28.
    J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, R. Peng, and A.C.S. Appl, Mater. Interfaces 5, 3867 (2013).CrossRefGoogle Scholar
  29. 29.
    N.T. Lan, N.D. Dung, N. Tu, and P.T. Huy, Vietnam J. Chem. 51, 719 (2013).Google Scholar
  30. 30.
    N.T. Lan, D.T. Chi, N.X. Dinh, N.D. Hung, H. Lan, P.A. Tuan, L.H. Thang, N.N. Trung, N.Q. Hoa, T.Q. Huy, N.V. Quy, D.T. Tung, V.N. Phan, and A.T. Le, J. Alloys Compd. 615, 843 (2014).CrossRefGoogle Scholar
  31. 31.
    R. Kumar and H. Munstedt, Biomaterials 26, 2081 (2005).CrossRefGoogle Scholar
  32. 32.
    D.B. William and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (New York: Springer, 2009) doi:10.1007/978-0-387-76501-3.CrossRefGoogle Scholar
  33. 33.
    A.T. Le, L.T. Tam, P.D. Tam, P.T. Huy, T.Q. Huy, N.V. Hieu, A.A. Kudrinskiy, and Y.A. Krutyakov, Mater. Sci. Eng. C 30, 910 (2010).CrossRefGoogle Scholar
  34. 34.
    J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, and M.J. Yacaman, Nanotechnology 16, 2346 (2005).CrossRefGoogle Scholar
  35. 35.
    I. Sondi and B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004).CrossRefGoogle Scholar
  36. 36.
    V. Berton, F. Montesi, C. Losasso, D.R. Facco, A. Toffan, and C. Terregino, J. Probl. Health 3, 1 (2014).Google Scholar
  37. 37.
    B.L. Ouay and F. Stellacci, Nano Today (2015). doi:10.1016/j.nantod.2015.04.002.Google Scholar
  38. 38.
    Y. Li, W. Zhang, J. Niu, and Y. Chen, Environ. Sci. Technol. (2013). doi:10.1021/es400945v.Google Scholar
  39. 39.
    P.P. Fu, Q. Xia, H.M. Hwang, P.C. Ray, and H. Yu, J. Food. Drug. Anal. 22, 64 (2014).CrossRefGoogle Scholar
  40. 40.
    O. Akhavan, M. Abdolahad, Y. Abdi, and S. Mohajerzadeh, J. Mater. Chem. 21, 387 (2011).CrossRefGoogle Scholar
  41. 41.
    O. Akhavan, J. Colloid Interface Sci. 336, 117 (2009).CrossRefGoogle Scholar
  42. 42.
    O. Akhavan and E. Ghaderi, ACS Nano 4, 5731 (2010).CrossRefGoogle Scholar
  43. 43.
    J. He, X. Zhu, Z. Qi, C. Wang, X. Mao, C. Zhu, Z. He, M. Li, Z. Tang, and A.C.S. Appl, Mater. Interfaces 7, 5605 (2015).CrossRefGoogle Scholar
  44. 44.
    S.R.V. Castrillon, F. Perreault, A.F. Faria, and M. Elimelech, Environ. Sci. Technol. Lett. 2, 11 (2015).Google Scholar
  45. 45.
    O. Akhavan, E. Ghaderi, and A. Akhavan, Biomaterials 33, 8017 (2012).CrossRefGoogle Scholar
  46. 46.
    X. Zou, L. Zhang, Z. Wang, and Y. Luo, J. Am. Chem. Soc. (2016). doi:10.1021/jacs.5b11411.Google Scholar
  47. 47.
    W. Fan, Y.H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X.Y. Ling, Nanoscale 6, 4843 (2014).CrossRefGoogle Scholar
  48. 48.
    G. Ding, S. Xie, Y. Liu, L. Wang, and F. Xu, Appl. Surf. Sci. (2015). doi:10.1016/j.apsusc.2015.03.175.Google Scholar
  49. 49.
    Q. Huang, J. Wang, W. Wei, Q. Yan, C. Wu, and X. Zhu, J. Hazard. Mater. 283, 123 (2015).CrossRefGoogle Scholar
  50. 50.
    S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, and T. Pal, ACS Appl. Mater. Interfaces 5, 8742 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Le Thi Tam
    • 1
  • Ngo Xuan Dinh
    • 1
    • 2
  • Nguyen Van Cuong
    • 1
    • 2
  • Nguyen  Van Quy
    • 3
  • Tran Quang Huy
    • 4
  • Duc-The Ngo
    • 5
  • Kristian Mølhave
    • 6
  • Anh-Tuan Le
    • 1
  1. 1.Department of Nanoscience and Nanotechnology, Advanced Institute for Science and Technology (AIST)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.University of Transport TechnologyHanoiVietnam
  3. 3.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and TechnologyHanoiVietnam
  4. 4.National Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
  5. 5.Electron Microscopy Centre, School of MaterialsUniversity of ManchesterManchesterUK
  6. 6.Department of Micro- and NanotechnologyTechnical University of DenmarkKgs LyngbyDenmark

Personalised recommendations