Journal of Electronic Materials

, Volume 45, Issue 10, pp 5146–5151 | Cite as

Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics

  • Qing-Ning Li
  • Chong-Rong ZhouEmail author
  • Ji-Wen Xu
  • Ling Yang
  • Xin ZhangEmail author
  • Wei-Dong Zeng
  • Chang-Lai Yuan
  • Guo-Hua Chen
  • Guang-Hui Rao


The large maximum polarization P max and low remnant polarization P r in relaxor ferroelectrics are key features for the energy storage density (W) and energy-storage efficiency (η) in materials selection. In this study, the ergodic relaxor (ER) state with high energy storage performance associated with low P r and large P max, induced by Sr0.85Bi0.1TiO3(SBT) addition in (1 − x)Bi0.5Na0.5TiO3-xSr0.85Bi0.1TiO3 (BNT-SBTx with x = 0.25–0.45, Bi0.5Na0.5TiO3 abbreviated as BNT) ceramics has been observed. In particular, significantly increased energy storage density (W = 1.5 J/cm3) and energy-storage efficiency (η = 73%) are obtained for BNT-SBT ergodic relaxor ceramics. These results suggest a new means of designing lead-free energy-storage materials.


Energy-storage dielectric properties ergodic relaxor ferroeletrics polarization hysteresis loops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Part of this work was financially supported by the National Nature Science Foundation of China (11564007, 61561015, and 61361007) and Guangxi Key Laboratory of Information Materials (1310001-Z) and the Natural Science Foundation of Guangxi (Grants No. 2012GXNSFGA60002 and 2015GXNSF AA 139250) and Open Project of Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities (DGN201504).


  1. 1.
    A. Chauhan, S. Patel, and R. Vaish, AIP Adv. 4, 087106 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Diab, P. Venet, H. Gualous, and G. Rojat, IEEE Trans. 24, 510 (2009).Google Scholar
  3. 3.
    A.K. Yadav and C. Gautam, J. Mater. Sci. 25, 5165–5187 (2014).Google Scholar
  4. 4.
    F. MacDougall, T.R. Jow, J. Ennis, S. Yen, X. Yang, and J. Ho, IEEE Power Modulator Conference (2008).Google Scholar
  5. 5.
    X. Wei, H. Yan, T. Wang, Q. Hu, G. Viola, S. Grasso, Q. Jiang, L. Jin, Z. Xu, and M.J. Reece, J. Appl. Phys. 113, 024103 (2013).CrossRefGoogle Scholar
  6. 6.
    Q. Chen, Y. Wang, X. Zhou, Q.M. Zhang, and S. Zhang, Appl. Phys. Lett. 92, 142909 (2008).CrossRefGoogle Scholar
  7. 7.
    H. Lee, J.R. Kim, M.J. Lanagan, S. Trolier-McKinstry, and C.A. Randall, J. Am. Ceram. Soc. 96, 1209 (2013).CrossRefGoogle Scholar
  8. 8.
    Z. Hu, B. Ma, R.E. Koritala, and U. Balachandran, Appl. Phys. Lett. 104, 263902 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, J. Am. Ceram. Soc. 98, 559 (2015).CrossRefGoogle Scholar
  10. 10.
    B. Rangarajan, B. Jones, T. Shrout, and M. Lanagan, J. Am. Ceram. Soc. 90, 784 (2007).CrossRefGoogle Scholar
  11. 11.
    G.R. Love, J. Am. Ceram. Soc. 73, 323 (1990).CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, X. Hao, and M. Li, J. Alloy. Compd. 601, 112 (2014).CrossRefGoogle Scholar
  13. 13.
    P. Khanchaitit, K. Han, M.R. Gadinski, Q. Li, and Q. Wang, Nat. Commun. 4, 2845 (2013).CrossRefGoogle Scholar
  14. 14.
    Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, and Z. Yu, J. Eur. Ceram. Soc. 34, 1209 (2014).CrossRefGoogle Scholar
  15. 15.
    Z. Xie, B. Peng, S. Meng, Y. Zhou, and Z. Yue, J. Am. Ceram. Soc. 96, 2061 (2013).CrossRefGoogle Scholar
  16. 16.
    W. Zhang, S. Xue, S. Liu, J. Wang, B. Shen, and J. Zhai, J. Alloy. Compd. 617, 740 (2014).CrossRefGoogle Scholar
  17. 17.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and N.N. Kraink, Sov. Phys. Solid State 2, 2651 (1961).Google Scholar
  18. 18.
    Y. Guo, M. Gu, H. Luo, Y. Liu, and R.L. Withers, Phys. Rev. B 83, 054118 (2011).CrossRefGoogle Scholar
  19. 19.
    G. Groh, W. Jo, and J. Rödel, J. Am. Ceram. Soc. 97, 1465 (2014).CrossRefGoogle Scholar
  20. 20.
    J.E. Daniels, W. Jo, J Rödel, and J.L. Jones, Appl. Phys. Lett. 95, 032904 (2008).CrossRefGoogle Scholar
  21. 21.
    H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn III, W. Kim, K.-K. Ahn, and J.-S. Lee, J. Appl. Phys. 113, 154102 (2013).CrossRefGoogle Scholar
  22. 22.
    H. Guo, C. Ma, X. Liu, and X. Tan, Appl. Phys. Lett. 102, 092902 (2013).CrossRefGoogle Scholar
  23. 23.
    H.-S. Han, W. Jo, J. Rödel, I.-K. Hong, W.P. Tai, and J.-S. Lee, J. Phys. 24, 365901 (2012).Google Scholar
  24. 24.
    G. Liu, H. Fan, G. Dong, J. Shi, and Q. Chang, J. Alloy. Compd. 664, 632 (2016).CrossRefGoogle Scholar
  25. 25.
    Q. Li, J. Wang, Y. Ma, L. Ma, G. Dong, and H. Fan, J. Alloy. Compd. 663, 701 (2016).CrossRefGoogle Scholar
  26. 26.
    W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, and W.D. Fei, J. Eur. Ceram. Soc. 36, 593 (2016).CrossRefGoogle Scholar
  27. 27.
    Q. Xu, H. Liu, Z. Song, X. Huang, A. Ullah, L. Zhang, J. Xie, H. Hao, M. Cao, and Z. Yao, J. Mater. Sci. 27, 322 (2016).Google Scholar
  28. 28.
    Y. Zhao, J. Xu, L. Yang, C. Zhou, X. Lu, C. Yuan, Q. Li, G. Chen, and H. Wang, J. Alloy. Compd. 666, 209 (2016).CrossRefGoogle Scholar
  29. 29.
    L. Wu, X. Wang, and L. Li, RSC Adv. 6, 14273 (2016).CrossRefGoogle Scholar
  30. 30.
    T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, J. Am. Ceram. Soc. 98, 559 (2015).CrossRefGoogle Scholar
  31. 31.
    T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, X.X. Huang, and Q.F. Zhou, J. Phys. D 49, 095302 (2016).CrossRefGoogle Scholar
  32. 32.
    C. Ang and Z. Yu, J. Appl. Phys. 107, 114106 (2010).CrossRefGoogle Scholar
  33. 33.
    C. Ang and Z. Yu, J. Appl. Phys. 91, 1487 (2002).CrossRefGoogle Scholar
  34. 34.
    Z. Yu, Ph.D. Thesis, University of Aveiro, Portugal, 1997 (in English).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Qing-Ning Li
    • 1
  • Chong-Rong Zhou
    • 1
    Email author
  • Ji-Wen Xu
    • 1
  • Ling Yang
    • 1
  • Xin Zhang
    • 1
    Email author
  • Wei-Dong Zeng
    • 1
  • Chang-Lai Yuan
    • 1
  • Guo-Hua Chen
    • 1
  • Guang-Hui Rao
    • 1
  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations