Advertisement

Journal of Electronic Materials

, Volume 45, Issue 10, pp 5127–5132 | Cite as

Enhanced Photovoltaic Performance with Carbon Nanotubes Incorporating into Hole Transport Materials for Perovskite Solar Cells

  • Junxia WangEmail author
  • Jingling Li
  • Xueqing XuEmail author
  • Gang Xu
  • Honglie Shen
Article

Abstract

In an attempt to further enhance the photovoltaic performance of perovskite solar cells (PSCs) fabricated by spray deposition under ambient conditions, carbon nanotubes (CNTs) are introduced for incorporation into hole transport materials (HTM). The effect of CNT category and length on the efficiency of the perovskite solar cell for incorporation into HTM is investigated. The enhanced photovoltaic performance is achieved in multi-walled carbon nanotubes (MWCNTs) with the shortest length. The efficiency of acid-treated MWCNT-based cells is improved compared to that of purified MWCNTs due to the better dispersibility and the π–π interaction between the –COOH group and spiro-OMeTAD. As the volume ratio of the spiro-OMeTAD and spiro/MWCNTs mixture is 2:2 or 3:1, the highest power conversion efficiency (PCE) of PSCs containing MWCNTs reaches 8.7% with the enhanced short-circuit current density (J sc) and open-circuit voltage (V oc).

Keywords

Carbon nanotubes perovskite solar cells hole transport materials photovoltaic performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Collaborative Innovation and Environmental Construction Platform of Guangdong Province (2014A050503051), Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion (MTEC-2015M01), and the Natural Science Foundation of Guangdong Province (2015A030310501).

References

  1. 1.
    M.R. Golobostanfard and H. Abdizadeh, Microporous Mesoporous Mater. 191, 74 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Batmunkh, M.J. Biggs, and J.G. Shapter, Small 11, 2963 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Yan, M.J. Uddin, T.J. Dickens, and O.I. Okoli, Sol. Energy 96, 239 (2013).CrossRefGoogle Scholar
  4. 4.
    J. Cai, Z. Chen, J. Li, Y. Wang, D. Xiang, J. Zhang, and H. Li, AIP Adv. 5, 027118 (2015).CrossRefGoogle Scholar
  5. 5.
    L. Qiu, Q. Wu, Z. Yang, X. Sun, Y. Zhang, and H. Peng, Small 11, 1150 (2014).CrossRefGoogle Scholar
  6. 6.
    H.A. Alturaif, Z.A. Alothman, J.G. Shapter, and S.M. Wabaidur, Molecules 19, 11734 (2014).CrossRefGoogle Scholar
  7. 7.
    T. Ji, L. Tan, X. Hu, Y. Dai, and Y. Chen, Phys. Chem. Chem. Phys. 17, 4137 (2015).CrossRefGoogle Scholar
  8. 8.
    N. Chehata, A. Ltaief, R. Bkakri, and A. Bouazizi, Mater. Sci. Semicond. Process. 22, 7 (2014).CrossRefGoogle Scholar
  9. 9.
    X. Hu, L. Chen, Y. Zhang, Q. Hu, J. Yang, and Y. Chen, Chem. Mater. 26, 6293 (2014).CrossRefGoogle Scholar
  10. 10.
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
  11. 11.
    H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, and Y. Yang, Science 345, 542 (2014).CrossRefGoogle Scholar
  12. 12.
    M.A. Green, A. Ho-baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014).CrossRefGoogle Scholar
  13. 13.
    D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, and J.C. Baena, Sci. Adv. 2, 158 (2016).CrossRefGoogle Scholar
  14. 14.
    S.S. Hegedus and W.N. Shafarman, Prog. Photovolt. Res. Appl. 12, 155 (2004).CrossRefGoogle Scholar
  15. 15.
    J.X. Wang, Z.N. Bi, Z.R. Liang, and X.Q. Xu, Acta Phys. Sin. 65, 058801 (2016).Google Scholar
  16. 16.
    Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao, K. Fu, S.K. Batabyal, J. Zhang, Q. Xiong, and L.H. Wong, ACS Nano 8, 6797 (2014).CrossRefGoogle Scholar
  17. 17.
    H.W. Chen, X. Pan, W.Q. Liu, M.L. Cai, D.X. Kou, Z.P. Huo, X.Q. Fang, and S.Y. Dai, Chem. Commun. 49, 7277 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Lee, M.M. Menamparambath, J. Hwang, and S. Baik, ChemSusChem 8, 2358 (2015).CrossRefGoogle Scholar
  19. 19.
    Z.R. Liang, S.H. Zhang, X.Q. Xu, N. Wang, J.X. Wang, X. Wang, Z.N. Bi, G. Xu, N.Y. Yuan, and J.N. Ding, RSC Adv. 5, 60562 (2015).CrossRefGoogle Scholar
  20. 20.
    J.X. Wang, J.L. Li, X.Q. Xu, Z.N. Bi, G. Xu, and H.L. Shen, RSC Adv. 6, 42413 (2016).CrossRefGoogle Scholar
  21. 21.
    X. Dang, H. Yi, M.H. Ham, J. Qi, D.S. Yun, R. Ladewsk, M.S. Strano, P.T. Hammond, and A.M. Belcher, Nat. Nanotechnol. 6, 377 (2011).CrossRefGoogle Scholar
  22. 22.
    C. Schönenberger, A. Bachtold, C. Strunk, J.P. Salvetat, and L. Forró, Appl. Phys. A 69, 283 (1999).CrossRefGoogle Scholar
  23. 23.
    L. Hu, D.S. Hecht, and G. George, Chem. Rev. 110, 5790 (2010).CrossRefGoogle Scholar
  24. 24.
    J.C. Charlier, Acc. Chem. Res. 35, 1063 (2002).CrossRefGoogle Scholar
  25. 25.
    J.X. Wang, S.L. Yan, R. Bao, K.L. Yang, and Z.J. Feng, Mater. Des. 51, 598 (2013).CrossRefGoogle Scholar
  26. 26.
    J.X. Wang, S.L. Yan, B.P. Xie, R. Bao, and Y.B. He, Polym. Compos. 35, 964 (2013).CrossRefGoogle Scholar
  27. 27.
    J.X. Wang, S.L. Yan, Y.B. He, F. Yan, and B.P. Xie, J. Wuhan Univ. Technol-Mater. Sci. 29, 451 (2014).CrossRefGoogle Scholar
  28. 28.
    W.Z. Li, H.P. Dong, X.D. Guo, N. Li, J.W. Li, G.D. Niu, and L.D. Wang, J. Mater. Chem. A 2, 20105 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouChina
  2. 2.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityJiangsuChina

Personalised recommendations