Journal of Electronic Materials

, Volume 45, Issue 10, pp 4813–4822 | Cite as

Interfacial Characterizations of a Nickel-Phosphorus Layer Electrolessly Deposited on a Silane Compound-Modified Silicon Wafer Under Thermal Annealing

Article

Abstract

Front-side metallization of a Si wafer was carried out using electroless deposition of nickel-phosphorus (Ni-P) catalyzed by polyvinylpyrrolidone-capped palladium nanoclusters (PVP-nPd). A 3-[2-(2-Aminoethylamino)ethylamino] propyl-trimethoxysilane (ETAS) layer was covalently bonded on the Si surface as bridge linker to the Pd cores of PVP-nPd clusters for improving adhesion between the Ni-P layer and the Si surface. To investigate the effects of an interfacial ETAS layer on the Ni silicide formation at the Ni-P/Si contact, the Ni-P-coated Si samples were thermally annealed via rapid thermal annealing (RTA) from 500°C to 900°C for 2 min. To compare with the ETAS sample, the sputtered Ni layer on Si and electroless Ni-P layer on ion-Pd-catalyzed Si (both are standard processes) were also investigated. The microstructural characterizations for the Ni-P or Ni layer deposited on the Si wafer were performed using x-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. Our results showed that the ETAS layer acted as a barrier to slow the atomic diffusion of Ni toward the Si side. Although the formation of Ni silicides required a higher annealing temperature, the adhesion strength and contact resistivity measurements of annealed Ni-P/Si contacts showed satisfactory results, which were essential to the device performance and reliability during thermal annealing.

Keywords

Annealing diffusion microstructures electroless nickel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Brenner, C. Chase, and G.E. Riddell, U.S. patent US 2,532,283 (1950).Google Scholar
  2. 2.
    J.F. Rohan, G. O’Riordan, and J. Boardman, Appl. Surf. Sci. 185, 289 (2002).CrossRefGoogle Scholar
  3. 3.
    C.P. Lin and C.M. Chen, Microelectron. Reliab. 52, 385 (2012).CrossRefGoogle Scholar
  4. 4.
    J.E. Lynch, P.E. Pehrsson, D.N. Leonard, and J.M. Calvert, J. Electrochem. Soc. 144, 1698 (1997).CrossRefGoogle Scholar
  5. 5.
    C.R. Jr. Shipley, U.S. patent 3,011,920 (1961).Google Scholar
  6. 6.
    S.J. Cherng, C.M. Chen, W.P. Dow, C.H. Lin, and S.W. Chen, Electrochem. Solid State Lett. 14, P13 (2011).CrossRefGoogle Scholar
  7. 7.
    T.C. Wei, T.C. Pan, C.M. Chen, K.C. Lai, and C.H. Wu, Electrochem. Commun. 54, 6 (2015).CrossRefGoogle Scholar
  8. 8.
    W.J. Dressick, L.M. Kondracki, M.S. Chen, S.L. Brandow, E. Matijević, and J.M. Calvert, Colloids Surf. A 108, 101 (1996).CrossRefGoogle Scholar
  9. 9.
    D. Zabetakis, W.J. Dressick, and A.C.S. Appl, Mater. Interfaces 1, 4 (2009).CrossRefGoogle Scholar
  10. 10.
    T. Osaka, N. Takano, T. Kurokawa, T. Kaneko, and K.J. Ueno, J. Electrochem. Soc. 149, C573 (2002).CrossRefGoogle Scholar
  11. 11.
    T. Osaka and M. Yoshino, Electrochim. Acta 53, 271 (2007).CrossRefGoogle Scholar
  12. 12.
    M.C. Raval and C.S. Solanki, J. Sol. Energy 2013, 1 (2013).CrossRefGoogle Scholar
  13. 13.
    E.J. Lee, D.S. Kim, and S.H. Lee, Sol. Energy Mater. Sol. Cells 74, 65 (2002).CrossRefGoogle Scholar
  14. 14.
    G.K. Reeves and H.B. Harrison, IEEE Electron Device Lett. 3, 111 (1982).CrossRefGoogle Scholar
  15. 15.
    Q.X. Mai, R.D. Daniels, and H.B. Harpalani, Thin Solid Films 166, 235 (1988).CrossRefGoogle Scholar
  16. 16.
    N.M. Martyak, Chem. Mater. 6, 1667 (1994).CrossRefGoogle Scholar
  17. 17.
    K.H. Hur, J.H. Jeong, and D.N. Lee, J. Mater. Sci. 25, 2573 (1990).CrossRefGoogle Scholar
  18. 18.
    M.O. Alam, Y.C. Chan, and K.N. Tu, J. Appl. Phys. 94, 4108 (2003).CrossRefGoogle Scholar
  19. 19.
    K.J. Lee and P. Nash, Phase Diagrams of Binary Nickel Alloys (Park: ASM Materials, 1991).Google Scholar
  20. 20.
    G. Ottaviani, J. Vac. Sci. Technol. 16, 1112 (1979).CrossRefGoogle Scholar
  21. 21.
    F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, and L.H. Chan, Microelectron. Eng. 71, 104 (2004).CrossRefGoogle Scholar
  22. 22.
    J. Foggiato, W.S. Yoo, M. Ouaknine, T. Murakami, and T. Fukada, Mater. Sci. Eng. B. 56, 114–115 (2004).Google Scholar
  23. 23.
    S. Abhaya, G. Amarendra, S. Kalavathi, P. Gopalan, M. Kamruddin, A.K. Tyagi, V.S. Sastry, and C.S. Sundar, Appl. Surf. Sci. 253, 3799 (2007).CrossRefGoogle Scholar
  24. 24.
    G. Ottaviani, K. Tu, and J. Mayer, Phys. Rev. B. 24, 3354 (1981).CrossRefGoogle Scholar
  25. 25.
    L. Tous, D.H. Van Dorp, R. Russell, J. Das, M. Aleman, H. Bender, J. Meersschaut, K. Opsomer, J. Poortmans, and R. Mertens, Energy Procedia (Amsterdam: Elsevier, 2011), pp. 39–46.Google Scholar
  26. 26.
    H. Pfeiffer, F. Tancret, and T. Brousse, Mater. Chem. Phys. 92, 534 (2005).CrossRefGoogle Scholar
  27. 27.
    V.A. Chaudhari and C.S. Solanki, Solar Energy Mater. Solar Cells 94, 2094 (2010).CrossRefGoogle Scholar
  28. 28.
    C. Boulord, A. Kaminski, B. Canut, S. Cardinal, and M. Lemiti, J. Electrochem. Soc. 157, H742 (2010).CrossRefGoogle Scholar
  29. 29.
    M.V. Sullivan and J.H.J. Eigler, J. Electrochem. Soc. 104, 226 (1957).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Chemical EngineeringNational Tsing-Hua UniversityHsin-ChuTaiwan
  3. 3.R&D DepartmentGintech Energy CorporationMiaoliTaiwan
  4. 4.Department of Mechanical EngineeringThe University of Hong KongHong KongPeople’s Republic of China

Personalised recommendations