Advertisement

Journal of Electronic Materials

, Volume 45, Issue 10, pp 5064–5068 | Cite as

Effects of Implantation Sequence on the Micro-defects in H and O Implanted Silicon

  • Zhuo WangEmail author
  • Lin Yang
  • Li-Zhu Zhang
  • Shao-Bo Shi
  • Peng Zhang
  • Xing-Zhong Cao
  • Bao-Yi Wang
Article
  • 56 Downloads

Abstract

Cz n-type Si (100) wafers are implanted with 190 keV O and 40 keV H ions in different implantation sequences. Cross sectional transmission electron microscopy and slow positron annihilation spectroscopy are used to study the formation and evolution of micro-defects. Our results clearly show that the defect morphology depends strongly on the implantation sequence. Large cavities are observed in O preimplanted samples, while only platelets are observed in H preimplanted samples. The change regularity of the S parameter is the same for the Si samples co-implanted at different sequences. But in H preimplanted samples, the S parameter is a little higher. The effects of the implantation sequence on the micro-defects have been discussed in combination with H and O implantation-induced defects as well as their interactions upon annealing.

Keywords

Platelet cavity H implantation silicon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 11275138), Tianjin Application Fundamental and Frontier Technology Research Project (No. 14JCYBJC17100 and No. 15JCYBJC16700) and Scientific Research Foundation of Tianjin University of Technology and Education (No. KYQD11001).

References

  1. 1.
    M. Bruel, Electron. Lett. 31, 1201 (1995).CrossRefGoogle Scholar
  2. 2.
    G.F. Cerofolini, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, and R. Tonini, Mater. Sci. Eng. R 27, 1 (2000).CrossRefGoogle Scholar
  3. 3.
    T. Höchbauer, A. Misra, M. Nastasi, and J.W. Mayer, J. Appl. Phys. 92, 2335 (2002).CrossRefGoogle Scholar
  4. 4.
    Q.Y. Tong, T.H. Lee, P. Werner, U. Gösele, R.B. Bergmann, and J.H. Werner, J. Electrochem. Soc. 144, L111 (1997).CrossRefGoogle Scholar
  5. 5.
    Q.Y. Tong, Y.L. Chao, L.J. Huang, and U.M. Gösele, Electron. Lett. 35, 341 (1999).CrossRefGoogle Scholar
  6. 6.
    I. Radu, I. Szafraniak, R. Scholz, M. Alexe, and U. Gösele, J. Appl. Phys. 94, 7820 (2003).CrossRefGoogle Scholar
  7. 7.
    A. Agarwal, T.E. Haynes, V.C. Venezia, O.W. Holland, and D.J. Eaglesham, Appl. Phys. Lett. 72, 1086 (1998).CrossRefGoogle Scholar
  8. 8.
    Z. Wang, J. Wang, and C.L. Liu, Nucl. Instr. Methods B 339, 58 (2014).CrossRefGoogle Scholar
  9. 9.
    J.F. Ziegler and J.P. Biersack, SRIM (stopping and range of ions in matter) computer code (2012). http://www.srim.org. Accessed 15 Oct 2012.
  10. 10.
    S.J. Pearton, J.W. Corbett, and M. Stavola, Hydrogen Incorporation in Crystalline Semiconductors (Berlin: Springer, 1992), pp. 4–27.Google Scholar
  11. 11.
    M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal, D.J. Eaglesham, and J. Sapjeta, J. Vaccum Sci. Technol. B 15, 1065 (1997).CrossRefGoogle Scholar
  12. 12.
    J.K. Lee, M. Nastasi, N.D. Theodore, A. Smalley, T.L. Alford, J.W. Mayer, M. Cai, and S.S. Lau, J. Appl. Phys. 96, 280 (2004).CrossRefGoogle Scholar
  13. 13.
    P. Nguyen, K.K. Bourdelle, T. Maurice, N. Sousbie, A. Boussagol, X. Hebras, L. Portigliatti, F. Letertre, A. Tauzin, and N. Rochat, J. Appl. Phys. 101, 033506 (2007).CrossRefGoogle Scholar
  14. 14.
    N. Desrosiers, A. Giguere, O. Moutanabbir, and B. Terreault, Appl. Phys. Lett. 87, 231908 (2005).CrossRefGoogle Scholar
  15. 15.
    P. Gaworzewski and K. Schmalz, Phys. Status Solidi A 58, K223 (1980).CrossRefGoogle Scholar
  16. 16.
    V. Raineri, M. Saggio, and E. Rimini, J. Mater. Res. 15, 1449 (2000).CrossRefGoogle Scholar
  17. 17.
    D.M. Follstaedt, S.M. Myers, G.A. Petersen, and J.W. Medernach, J. Electron. Mater. 25, 157 (1996).CrossRefGoogle Scholar
  18. 18.
    J.H. Evans, A. Van Veen, and C.C. Griffioen, Nucl. Instr. Methods B 28, 360 (1987).CrossRefGoogle Scholar
  19. 19.
    O. Moutanabbir and B. Terreault, Appl. Phys. Lett. 86, 051906 (2005).CrossRefGoogle Scholar
  20. 20.
    P. Nguyen, I. Cayrefourcq, K.K. Bourdelle, A. Boussagol, E. Guiot, N.B. Mohamed, N. Sousbie, and T. Akatsu, J. Appl. Phys. 97, 083527 (2005).CrossRefGoogle Scholar
  21. 21.
    J. Keinonen, M. Hautala, E. Rauhala, V. Karttunen, A. Kuronen, J. Räisänen, J. Lahtinen, A. Vehanen, E. Punkka, and P. Hautojärvi, Phys. Rev. B 37, 8269 (1988).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Zhuo Wang
    • 1
    Email author
  • Lin Yang
    • 2
  • Li-Zhu Zhang
    • 1
  • Shao-Bo Shi
    • 1
  • Peng Zhang
    • 3
  • Xing-Zhong Cao
    • 3
  • Bao-Yi Wang
    • 3
  1. 1.School of ScienceTianjin University of Technology and EducationTianjinChina
  2. 2.School of Physical EducationShijiazhuang UniversityShijiazhuangChina
  3. 3.Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations