Advertisement

Journal of Electronic Materials

, Volume 45, Issue 8, pp 4441–4452 | Cite as

Thermodynamic Properties of Liquid Silver-Antimony-Tin Alloys Determined from Electrochemical and Calorimetric Measurements

  • Joanna Łapsa
  • Bogusław OnderkaEmail author
Open Access
Article

Abstract

The thermodynamic properties of liquid Ag-Sb-Sn alloys were obtained through use of the drop solution calorimetric method and electromotive force (emf) measurements of galvanic cells with a yttria stabilized zirconia (YSZ) solid electrolyte. The experiments were carried out along Ag0.25Sb0.75, Ag0.5Sb0.5 and Ag0.75Sb0.25 sections of the ternary system in the temperature range from 973 K to 1223 K. From the measured emf, the tin activity in liquid solutions of Ag-Sb-Sn was determined for the first time. The partial and integral enthalpy of mixing were determined from calorimetric measurements at two temperatures. These measurements were performed along two cross-sections: Sb0.5Sn0.5 at 912 K and 1075 K, and Ag0.75Sb0.25 at 1075 K. Both experimental data sets were used to find ternary interaction parameters by applying the Redlich–Kister–Muggianu model of the substitutional solution. Consequently, the set of parameters describing the thermodynamic properties of the liquid phase was derived.

Keywords

Thermodynamics ternary system silver alloys enthalpy of mixing galvanic cell tin activity 

Notes

Acknowledgements

This work was supported by the State Committee for Scientific Research at AGH University Science and Technology, Faculty of Non-Ferrous Metals in Krakow, Poland under Grant Number 129/N-COST/2008.

References

  1. 1.
    R.W. Neu, D.T. Scott, and M.W. Woodmansee, J. Electron. Packag. 123, 238 (2001).CrossRefGoogle Scholar
  2. 2.
    D.B. Masson and B.K. Kirkpatrick, J. Electron. Mater. 15, 349 (1986).CrossRefGoogle Scholar
  3. 3.
    A. Kroupa, A.T. Dinsdale, A. Watson, J. Vrestal, J. Vizdal, and A. Zemanova, JOM 59, 20 (2007).CrossRefGoogle Scholar
  4. 4.
    B. Gather, P. Schroter, and R. Blachnik, Z. Metallkd. 78, 280 (1987).Google Scholar
  5. 5.
    D. Li, S. Delsante, A. Watson, and G. Borzone, J. Electron. Mater. 41, 67 (2011).CrossRefGoogle Scholar
  6. 6.
    S.W. Chen, P.Y. Chen, C.N. Chiu, Y.C. Huang, and C.H. Wang, Metall. Mater. Trans. A 39, 3191 (2008).CrossRefGoogle Scholar
  7. 7.
    C.S. Chen and Y.L. Lee, J. Natl. Sci. People’s Univ. North-East China 33 (1957).Google Scholar
  8. 8.
    J. Zheng, Acta Phys. Sinica 14, 393 (1958).Google Scholar
  9. 9.
    P.J. Oberndorff, A.A. Kodentsov, V. Vuorinen, J.K. Kivilahti, and F.J.J. van Loo, Ber. Bunsenges. Phys. Chem. 102, 1321 (1998).CrossRefGoogle Scholar
  10. 10.
    C.Y. Lin, C. Lee, X. Liu, and Y.W. Yen, Intermetallics 16, 230 (2008).CrossRefGoogle Scholar
  11. 11.
    C.S. Oh, J.H. Shim, B.J. Lee, and D.N. Lee, J. Alloys Compd. 238, 155 (1996).CrossRefGoogle Scholar
  12. 12.
    S.W. Chen, C.C. Chen, W. Gierlotka, A.R. Zi, P.Y. Chen, and H.J. Wu, J. Electron. Mater. 37, 992 (2008).CrossRefGoogle Scholar
  13. 13.
    R. Schmid-Fetzer, L. Rokhlin, E. Lysova, and M. Zinkevich, in Silver-antimony-tin. Thermodynamic Properties Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT. Noble Metal Systems. Selected Systems from Ag-Al-Zn to Rh-Ru-Sc, Part 11B, eds. G. Effenberg, S. Ilyenko (Berlin, Springer, 2006) p. 181Google Scholar
  14. 14.
    W. Gierlotka, Y.-C. Huang, and S.-W. Chen, Metall. Mater. Trans. A 39, 3199 (2008).CrossRefGoogle Scholar
  15. 15.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed. (Materials Park: ASM International, 1996), p. 3304.Google Scholar
  16. 16.
    G.G. Charette and S.N. Flengas, J. Electrochem. Soc. 115, 796 (1968).CrossRefGoogle Scholar
  17. 17.
    J. Nyk and B. Onderka, Monatsh. Chem. 143, 1219 (2012).CrossRefGoogle Scholar
  18. 18.
    T.N. Belford and C.B. Alcock, Trans. Faraday Soc. 61, 443 (1965).CrossRefGoogle Scholar
  19. 19.
    G. Petot-Ervas, R. Farhi, and C. Petot, J. Chem. Thermodyn. 7, 1131 (1975).CrossRefGoogle Scholar
  20. 20.
    S. Seetharaman and L.I. Staffansson, Scand. J. Metall. 6, 143 (1977).Google Scholar
  21. 21.
    T. Oishi, T. Hiruma, and J. Moriyama, Nippon Kinzoku Gakkaishi 36, 481 (1972).Google Scholar
  22. 22.
    Y. Matsushita and K. Goto, in Thermodynamics, ed. H. Schmalzried, Vol. I, (IAEA, Vienna, 1966) p. 111Google Scholar
  23. 23.
    M.J. Bannister, J. Chem. Thermodyn. 18, 455 (1986).CrossRefGoogle Scholar
  24. 24.
    C. Mallika, A.M.E.S. Raj, K.S. Nagaraja, and O.M. Sreedharan, Thermochim. Acta 371, 95 (2001).CrossRefGoogle Scholar
  25. 25.
    A.T. Dinsdale, Calphad 15, 317 (1991).CrossRefGoogle Scholar
  26. 26.
    A. Kroupa, A. Dinsdale, A. Watson, J.J. Vřeštál, A. Zemanova, and P. Broz, J. Min. Metall. Sect. B-Metall. B 48, 339 (2012).CrossRefGoogle Scholar
  27. 27.
    O. Redlich and A.T. Kister, Ind. Eng. Chem. Res. 40, 345 (1948).CrossRefGoogle Scholar
  28. 28.
    M. Muggianu, M. Gambino, and J.-P. Bros, J. Chim. Phys. 72, 83 (1975).Google Scholar
  29. 29.
    T. Nozaki, M. Shimoji, and K. Niwa, Ber. Bunsenges. 70, 207 (1966).Google Scholar
  30. 30.
    A.A. Vecher and Y.I. Gerasimov, Doklady Acad. Sci. SSSR 134, 863 (1961).Google Scholar
  31. 31.
    M. Hino, T. Azakami, and M. Kameda, J. Japan Inst. Met. 39, 1175 (1975).Google Scholar
  32. 32.
    A. Krzyżak and K. Fitzner, Thermochim. Acta 414, 115 (2004).CrossRefGoogle Scholar
  33. 33.
    P.J.R. Chowdhury and A. Ghosh, Metal. Mater. Trans. B 2, 2171 (1971).CrossRefGoogle Scholar
  34. 34.
    P. Kubaschewski and C.B. Alcock, J. Chem. Thermodyn. 4, 259 (1972).CrossRefGoogle Scholar
  35. 35.
    S. Seetharaman and L.I. Staffansson, Chem. Scr. 10, 61 (1976).Google Scholar
  36. 36.
    M. Iwase, M. Yasuda, S. Miki, and T. Mohri, Trans. JIM 19, 654 (1978).Google Scholar
  37. 37.
    K. Kameda, Y. Yoshida, and S. Sakairi, J. Japan Inst. Met. 44, 858 (1980).Google Scholar
  38. 38.
    D. Jendrzejczyk-Handzlik and K. Fitzner, J. Chem. Thermodyn. 85, 86 (2015).CrossRefGoogle Scholar
  39. 39.
    J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Calphad 26, 273 (2002).CrossRefGoogle Scholar
  40. 40.
    W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, Calphad 33, 328 (2009).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Non-Ferrous MetalsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations