Journal of Electronic Materials

, Volume 45, Issue 8, pp 4005–4009 | Cite as

(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Synthesized by a Gel-Casting Method

  • Wei XiongEmail author
Open Access


(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) powder was synthesized by a solid-state reaction method, then the ceramics were fabricated by gel-casting and die-pressing routes, respectively. Piezoelectric coefficient (d 33 ) was measured by the d 33 m; Planar mode electromechanical coupling coefficient (k p ), dielectric loss (tanδ) and relative permittivity (ε r ) were measured by the impedance analyzer. Results of measurements showed that in the range of tested sintering temperature (1300–1500°C), gel-casting samples showed better piezoelectric and electromechanical coupling coefficients (d 33 = 395 pC/N, k p = 0.44) compared with die-pressing samples, and comparable dielectric properties were also observed. (tanδ = 0.037, ε r = 3267).


BCZT gel-casting piezoelectric properties dielectric properties 


  1. 1.
    D.-J. Shin, S.-J. Jeong, C.-E. Seo, K.-H. Cho, and J.-H. Koh, Ceram. Int. 41, 686 (2015).CrossRefGoogle Scholar
  2. 2.
    C. Fei, Z. Chen, W.M. Fong, B. Zhu, L. Wang, W. Ren, Y. Li, J. Shi, K.K. Shung, and Q. Zhou, Ceram. Int. 41, 650 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Yu, J. Wu, T. Zhao, S. Dong, H. Gu, and Y. Hu, J. Alloys Compd. 615, 676 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, and T. Granzow, J. Am. Ceram. Soc. 92, 1153 (2009).CrossRefGoogle Scholar
  5. 5.
    P.K. Panda, J. Mater. Sci. 44, 5049 (2009).CrossRefGoogle Scholar
  6. 6.
    J.-H. Kim, D.-H. Kim, I.-T. Seo, J. Hur, J.-H. Lee, B.-Y. Kim, and S. Nahm, Sens. Actuators A 234, 9 (2015).CrossRefGoogle Scholar
  7. 7.
    W. Liu and X. Ren, Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle Scholar
  8. 8.
    P. Wang, Y. Li, and Y. Lu, J. Eur. Ceram. Soc. 31, 2005 (2011).CrossRefGoogle Scholar
  9. 9.
    L. García-gancedo, S.M. Olhero, F.J. Alves, J.M.F. Ferreira, C.E.M. Demoré, S. Cochran, and T.W. Button, J. Micromech. Microeng. 22, 125001 (2012).CrossRefGoogle Scholar
  10. 10.
    R. Gilissen, J.P. Erauw, A. Smolders, E. Vanswijgenhoven, and J. Luyten, Mater. Des. 21, 251 (2000).CrossRefGoogle Scholar
  11. 11.
    D. Xu, X. Cheng, and H. Geng, Ceram. Int. 41, 9433 (2015).CrossRefGoogle Scholar
  12. 12.
    D. Guo, K. Cai, L. Li, C. Nan, and Z. Gui, Ceram. Int. 29, 403 (2003).CrossRefGoogle Scholar
  13. 13.
    D. Guo, K. Cai, L. Li, and Z. Gui, J. Eur. Ceram. Soc. 23, 1131 (2003).CrossRefGoogle Scholar
  14. 14.
    S. Hunpratub, S. Maensiri, and P. Chindaprasirt, Ceram. Int. 40, 13025 (2014).CrossRefGoogle Scholar
  15. 15.
    F. Rubio-Marcos, P. Marchet, T. Merle-Méjean, and J.F. Fernandez, Mater. Chem. Phys. 123, 91 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Yang, C.-A. Wang, R. Guo, Y. Huang, and C.-W. Nan, Ceram. Int. 36, 549 (2010).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations