Skip to main content
Log in

Comparative Study of Cu Films Prepared by DC, High-Power Pulsed and Burst Magnetron Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A comparative study of deposition rate, adhesion, structural and electrical properties of nanocrystalline copper thin films deposited using direct current magnetron sputtering (DCMS) and different regimes of high power pulsed magnetron sputtering is presented. High-power impulse magnetron sputtering (HIPIMS) and burst regime (pulse packages) of magnetron sputtering are investigated. The ion and atomic flows toward the growing film during magnetron sputtering of a Cu target are determined. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. In all sputtering regimes, Cu films have mixture crystalline orientations of [111], [200], [311] and [220] in the direction of the film growth. As peak power density in studied deposition regimes was different in order of magnitude (from 15 W/cm2 in DC regime to 3700 W/cm2 in HIPIMS), film properties were also greatly different. DCMS Cu films exhibit a porous columnar grain structure. In contrast, HIPIMS Cu films have a slightly columnar and denser composition. Cu films deposited using burst regimes at peak power density of 415 W cm−2 and ion-to-atom ratio of about 5 have the densest composition and smallest electrical resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Lin, N. Zhang, W.D. Sproul, and J.J. Moore, Surf. Coat. Technol. 206, 3283 (2012).

    Article  Google Scholar 

  2. V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, and I. Petrov, Surf. Coat. Technol. 122, 290 (1999).

    Article  Google Scholar 

  3. S.P. Bugaev, N.N. Koval, N.S. Sochugov, and A.N. Zakharov, in 17th International Symposium ISDEIV (1996). doi:10.1109/DEIV.1996.545530

  4. E. Oks and A. Anders, Rev. Sci. Instrum. 81, 02B306 (2010).

    Article  Google Scholar 

  5. A.N. Odivanova, N.S. Sochugov, K.V. Oskomov, and V.G. Podkovyrov, Plasma Phys. Rep. 37, 239 (2011). doi:10.1134/S1063780X1101003X.

    Article  Google Scholar 

  6. D.J. Christie, J. Vac. Sci. Technol. A 23, 330 (2005).

    Article  Google Scholar 

  7. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmundsson, Thin Solid Films 513, 1 (2006).

    Article  Google Scholar 

  8. R. Bandorf, A. Bloche, K. Ortner, H. Lüthje, and T. Jung, Plasma Process. Polym. 4, 129 (2007).

    Article  Google Scholar 

  9. R. Bandorf, V. Sittinger, and G. Bräuer, Comprehensive Materials Processing, ed. S.H.F.B.J.V.T. Yilbas (Oxford: Elsevier, 2014), p. 75.

    Chapter  Google Scholar 

  10. R. Chistyakov and B. Abraham, in 49th Annual SVC Technical Conference (2006).

  11. J. Lin, W.D. Sproul, J.J. Moore, Z. Wu, S. Lee, R. Chistyakov, and B. Abraham, JOM 63, 48 (2011).

    Article  Google Scholar 

  12. O. Antonin, V. Tiron, C. Costin, G. Popa, and T.M. Minea, J. Phys. D 48, 015202 (2015).

    Article  Google Scholar 

  13. J. Sarkar, Sputtering Materials for VLSI and Thin Film Devices (Oxford: Elsevier 2014). doi:10.1016/B978-0-8155- 1593-7.00002-3.

  14. Z.H. Cao, H.M. Lu, and X.K. Meng, Mater. Chem. Phys. 117, 321 (2009).

    Article  Google Scholar 

  15. A.K. Sikder, A. Kumar, P. Shukla, P.B. Zantye, and M. Sanganaria, J. Electron. Mater. 32, 1028 (2003).

    Article  Google Scholar 

  16. I.I. Beilis, Y. Koulik, and R.L. Boxman, Surf. Coat. Technol. 258, 908 (2014).

    Article  Google Scholar 

  17. T. Duguet, F. Senocq, L. Laffont, and C. Vahlas, Surf. Coat. Technol. 230, 254 (2013).

    Article  Google Scholar 

  18. P.J. Lin and M.C. Chen, J. Electron. Mater. 28, 567 (1999).

    Article  Google Scholar 

  19. X. Zhang, A. Misra, H. Wang, T.D. Shen, J.G. Swadener, J.D. Embury, H. Kung, R.G. Hoagland, and M. Nastasi, J. Mater. Res. 18, 1600 (2003).

    Article  Google Scholar 

  20. C. Engström, T. Berlind, J. Birch, L. Hultman, I.P. Ivanov, S.R. Kirkpatrick, and S. Rohde, Vacuum 56, 107 (2000).

    Article  Google Scholar 

  21. A. Anders, Surf. Coat. Technol. 205, 171 (2011).

    Article  Google Scholar 

  22. K.E. Cooke, A. Goodyear, J. Hampshire, and D.G. Teer, Surf. Coat. Technol. 188–189, 750 (2004).

    Google Scholar 

  23. S. Mahieu, K. Van Aeken, and D. Depla, J. Appl. Phys. 104, 113301 (2008).

    Article  Google Scholar 

  24. A. Kramida, Yu. Ralchenko, and J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 5.3) (2015). http://physics.nist.gov/asd, Accessed 28 Jan 2016.

  25. B.-J. Lee, J.-H. Shim, and M. Baskes, Phys. Rev. B 68, 144112 (2003).

    Article  Google Scholar 

  26. S.K. Mukherjee, L. Joshi, and P.K. Barhai, Surf. Coat. Technol. 205, 4582 (2011).

    Article  Google Scholar 

  27. D.W. Hoffman and J.A. Thornton, J. Vac. Sci. Technol. 17, 380 (1980).

    Article  Google Scholar 

  28. M. Mausbach, Surf. Coat. Technol. 74–75, 264 (1995).

    Google Scholar 

  29. G.C.A.M. Janssen and J.-D. Kamminga, Appl. Phys. Lett. 85, 3086 (2004).

    Article  Google Scholar 

  30. P. Ziemann and E. Kay, J. Vac. Sci. Technol. A 1, 512 (1983).

    Article  Google Scholar 

  31. A.P. Ehiasarian, P.E. Hovsepian, L. Hultman, and U. Helmersson, Thin Solid Films 457, 270 (2004).

    Article  Google Scholar 

  32. A.S. Dzhumaliev, YuV Nikulin, and YuA Filimonov, Tech. Phys. 59, 1097 (2014).

    Article  Google Scholar 

  33. L. Huang, F. Liu, and X.G. Gong, Phys. Rev. B 70, 155320 (2004).

    Article  Google Scholar 

  34. K.L. Chopra, Thin Film Phenomena. (Huntington: Krieger, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Solovyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovyev, A.A., Oskirko, V.O., Semenov, V.A. et al. Comparative Study of Cu Films Prepared by DC, High-Power Pulsed and Burst Magnetron Sputtering. J. Electron. Mater. 45, 4052–4060 (2016). https://doi.org/10.1007/s11664-016-4582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4582-6

Keywords

Navigation