Advertisement

Journal of Electronic Materials

, Volume 45, Issue 7, pp 3612–3620 | Cite as

Precipitation Synthesis, Characterization, Morphological Control, and Photocatalyst Application of ZnWO4 Nanoparticles

  • S. Mostafa Hosseinpour-Mashkani
  • Mahnaz Maddahfar
  • Ali Sobhani-NasabEmail author
Article

Abstract

Zinc tungstate nanoparticles have been successfully synthesized by a precipitation method in the presence of different polymeric surfactants. This study aimed to investigate the effect of different solvents and polymeric surfactants such as carboxymethyl cellulose, polyethylene glycol, and polyvinyl alcohol on the morphology, particle size, and crystal structure of the final product. The as-synthesized products were characterized by powder x-ray diffraction analysis, scanning electron microscopy, ultraviolet–visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy techniques. Furthermore, the hysteresis loop of the zinc tungstate nanoparticles at room temperature revealed paramagnetic behavior. Photocatalysis results revealed that maximum methyl orange decolorization of 85% was achieved with ZnWO4 nanoparticles in 240 min under visible-light irradiation. The saturation magnetization, remanent magnetization, and coercivity of the ZnWO4 nanoparticles were 0.003 emu/g, 0.0005 emu/g, and 110 Oe, respectively.

Keywords

Nanoparticles ZnWO4 precipitation method semiconductor photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors are grateful to the Council of the University of Arak for providing financial support to undertake this work.

References

  1. 1.
    M. Zahraei, A. Monshi, D. Shahbazi-Gahrouei, M. Amirnasr, B. Behdadfar, and M. Rostami, J. Nanostruct. 5, 137 (2015).Google Scholar
  2. 2.
    M. Mousavi-Kamazani, M. Salavati-Niasari, and D. Ghanbari, J. Nanostruct. 2, 363 (2012).Google Scholar
  3. 3.
    M. Shahrekizad, A. Gholamalizadeh-Ahangar, and N. Mir, J. Nanostruct. 5, 117 (2015).Google Scholar
  4. 4.
    F. Beshkar and M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Panahi-Kalamuei, M. Mousavi-Kamazani, and M. Salavati-Niasari, J. Nanostruct. 4, 459 (2014).Google Scholar
  6. 6.
    F.S. Ghoreishi, V. Ahmadi, and M. Samadpour, J. Nanostruct. 3, 453 (2013).Google Scholar
  7. 7.
    M. Behpour, M. Mehrzad, and S.M. Hosseinpour-Mashkani, J. Nanostruct. 5, 183 (2015).Google Scholar
  8. 8.
    M. Riazian, J. Nanostruct. 4, 433 (2014).Google Scholar
  9. 9.
    M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, and H.G. Estarki, J. Mater. Sci. 26, 7588 (2015).Google Scholar
  10. 10.
    V. Rajendar, B. Rajitha, and K.V. Rao, J. Mater. Sci. 26, 9661 (2015).Google Scholar
  11. 11.
    A.A. Kaminskii, Appl. Opt. 38, 4533 (1999).CrossRefGoogle Scholar
  12. 12.
    A.R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, J. Mater. Sci. 35, 4879 (2000).CrossRefGoogle Scholar
  13. 13.
    A. Kuzmin, R. Kalendarev, A. Kursitis, and J. Purans, J. Non-Cryst. Solids 353, 1840 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Kuzmin and J. Purans, Radiat. Meas. 33, 586 (2001).CrossRefGoogle Scholar
  15. 15.
    S.C. Sabharwal, J. Cryst. Growth 200, 191 (1999).CrossRefGoogle Scholar
  16. 16.
    T. Oi, K. Takagi, and T. Fukazawa, Appl. Phys. Lett. 36, 278 (1980).CrossRefGoogle Scholar
  17. 17.
    S.J. Chen, J.H. Zhou, X.T. Chen, J. Li, L.H. Li, J.M. Hong, Z. Xue, and X.Z. You, Chem. Phys. Lett. 375, 185 (2003).CrossRefGoogle Scholar
  18. 18.
    V. Pankratov, L. Grigorjeva, D. Millers, S. Chernov, and S. Voloshinovskii, J. Lumin. 94, 427 (2001).CrossRefGoogle Scholar
  19. 19.
    B. Yan and F. Lei, J. Alloys Compd. 507, 460 (2010).CrossRefGoogle Scholar
  20. 20.
    G. Huang, C. Zhang, and Y. Zhu, J. Alloys Compd. 432, 269 (2007).CrossRefGoogle Scholar
  21. 21.
    Y. Su, B. Zhu, K. Guan, S. Gao, L. Lv, Ch Du, L. Peng, L. Hou, and X. Wang, J. Phys. Chem. C 116, 18508 (2012).CrossRefGoogle Scholar
  22. 22.
    A. Kalinko, A. Kuzmin, and R.A. Evarestov, Solid State Commun. 149, 425 (2009).CrossRefGoogle Scholar
  23. 23.
    V.N. Kolobanova, I.A. Kamenskikh, V.V. Mikhailin, and I.N. Shpinkov, Phys. Res. A 486, 496 (2002).Google Scholar
  24. 24.
    V. Srikanth and D.R. Clarke, J. Appl. Phys. 81, 6357 (1997).CrossRefGoogle Scholar
  25. 25.
    S. Ran and L. Gao, Chem. Lett. 35, 1312 (2006).CrossRefGoogle Scholar
  26. 26.
    P.J. Born, D.S. Robertson, P.W. Smith, G. Hames, J. Reed, and J. Telfor, J. Lumin. 131, 24 (1981).Google Scholar
  27. 27.
    J.D. Vergados, Phys. Rep. 361, 1 (2002).CrossRefGoogle Scholar
  28. 28.
    G. Huang and Y. Zhu, Cryst. Eng. Commun. 14, 8076 (2012).CrossRefGoogle Scholar
  29. 29.
    J. Yan, Y. Shen, F. Li, and T. Li, Sci. World J. 2013, 458106 (2013).Google Scholar
  30. 30.
    N.V. Minh and N.M. Hung, Mater. Sci. Appl. 2, 988 (2011).Google Scholar
  31. 31.
    G. Huang and Y. Zhu, Mater. Sci. Eng., B 139, 201 (2007).CrossRefGoogle Scholar
  32. 32.
    A. Javidan, M. Ramezani, A. Sobhani-Nasab, and S.M. Hosseinpour-Mashkani, J. Mater. Sci. 26, 3813 (2015).Google Scholar
  33. 33.
    L. Nejati-Moghadam, A.E. Bafghi-Karimabad, M. Salavati-Niasari, and H. Safardoust, J. Nanostruct. 5, 47 (2015).Google Scholar
  34. 34.
    E. Khosravifard, M. Salavati-Niasari, M. Dadkhah, and G. Sodeifian, J. Nanostruct. 2, 191 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • S. Mostafa Hosseinpour-Mashkani
    • 1
  • Mahnaz Maddahfar
    • 1
  • Ali Sobhani-Nasab
    • 1
    Email author
  1. 1.Young Researchers and Elites Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations