Advertisement

Journal of Electronic Materials

, Volume 45, Issue 7, pp 3651–3658 | Cite as

Drop Reliability of Epoxy-contained Sn-58 wt.%Bi Solder Joint with ENIG and ENEPIG Surface Finish Under Temperature and Humidity Test

  • Woo-Ram Myung
  • Yongil Kim
  • Kyung-Yeol Kim
  • Seung-Boo Jung
Article

Abstract

The influence of two kinds of surface finish, namely electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG), on the interfacial reactions and drop reliability of epoxy-enhanced Sn-58 wt.%Bi solder has been investigated after temperature–humidity storage tests. The chemical composition and morphology of intermetallic compounds (IMCs) were characterized by scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electron probe microanalysis. Also, the mechanical reliability of solder joints was evaluated using board-level drop tests. The Sn-Bi epoxy solder/ENEPIG joint exhibited higher IMC growth rate than the Sn-Bi epoxy solder/ENIG joint. After 500 h at 85°C/85% RH storage condition, new IMCs were formed on the Ni3Sn4 layer in samples with both surface finishes. The results of board-level drop tests showed that the number of drops was higher for the ENIG than the ENEPIG surface finish. Solder joint fracture occurred along the interface between the solder and IMC layer for the ENIG surface finish. However, with the ENEPIG surface finish, the crack propagated between the IMCs.

Keywords

Sn-58 wt.%Bi epoxy solder ENIG ENEPIG board-level drop test temperature–humidity test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry, & Energy, Republic of Korea (20154030200870).

References

  1. 1.
    P. Cox and G. Drys, Report No. Directive 2002/95/EC, Official Journal of the European Union, Brussels, January 2003.Google Scholar
  2. 2.
    P. Cox and G. Drys, Report No. Directive 2002/96/EC, Official Journal of the European Union, Brussels, January 2003.Google Scholar
  3. 3.
    Q. Zhao, J. Bi, A. Hu, M. Li, and D. Mao, in International Conference on Electronic Packaging Technology & High Density Packaging (2012), pp. 1226–1229. doi: 10.1109/ ICEPT-HDP.2012.6474827
  4. 4.
    W.M. Chen, S.K. Kang, and C.R. Kao, J. Alloys Compd. 520, 244 (2012).CrossRefGoogle Scholar
  5. 5.
    J.W. Yoon, S.W. Kim, J.M. Koo, D.G. Kim, and S.B. Jung, J. Electron. Mater. 33, 1190 (2004).CrossRefGoogle Scholar
  6. 6.
    L.C. Shiau, C.E. Ho, and C.R. Kao, Solder. Surf. Mt. Technol. 14, 25 (2002).CrossRefGoogle Scholar
  7. 7.
    C.Z. Liu and W. Zhang, J. Mater. Sci. 44, 149 (2009).CrossRefGoogle Scholar
  8. 8.
    J.W. Yoon, B.I. Noh, B.K. Kim, C.C. Shur, and S.B. Jung, J. Alloys Compd. 486, 142 (2009).CrossRefGoogle Scholar
  9. 9.
    J. Wang, H.S. Liu, L.B. Liu, and Z.P. Jin, J. Electron. Mater. 35, 1842 (2006).CrossRefGoogle Scholar
  10. 10.
    J.W. Yoon, C.B. Lee, and S.B. Jung, Mater. Trans. 43, 1821 (2002).CrossRefGoogle Scholar
  11. 11.
    P.L. Liu and J.K. Shang, J. Mater. Res. 16, 1651 (2001).CrossRefGoogle Scholar
  12. 12.
    M.S. Suh, C.J. Park, and H.S. Kwon, Surf. Coat. Technol. 200, 3527 (2006).CrossRefGoogle Scholar
  13. 13.
    Q.K. Zhang and Z.F. Zhang, Mater. Sci. Eng. A. 528, 2686 (2011).CrossRefGoogle Scholar
  14. 14.
    M.C. Liao, P.S. Huang, Y.H. Lin, C.Y. Huang, M.Y. Tsai, and T.C. Huang, in International Microsystems, Packaging, Assembly and Circuits Technology Conference (2014), pp. 397–400. doi: 10.1109/IMPACT.2014.7048436
  15. 15.
    B. Sandy, E. Briggs, R. Lasky, Indium Corporation Tech Paper, 1 (2011). http://www.indium.com/techlibrary/whitepapers/ advantages-of-bismuthbased-alloys-for-low-temperature-pbfree-soldering-and-rework. Accessed 27 June 2014
  16. 16.
    I. Cho, J.H. Ahn, J.W. Yoon, Y.E. Shin, and S.B. Jung, J. Mater. Sci. 23, 1515 (2012).Google Scholar
  17. 17.
    W.R. Myung, Y. Kim, and S.B. Jung, J. Alloys Compd. 615, S411 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Kim, W.R. Myung, and S.B. Jung, J. Microelectron. Packag. Soc. 21, 97 (2014).CrossRefGoogle Scholar
  19. 19.
    L. Zhang, J.G. Han, C.W. He, and Y.H. Guo, J. Mater. Sci. 24, 172 (2013).Google Scholar
  20. 20.
    S.G. Desmarest, Mater. Sci. Tech-lond. 28, 257 (2012).CrossRefGoogle Scholar
  21. 21.
    JEDEC Solid State Technology Association, JESD22-B104C “Mechanical Shock”, 2004Google Scholar
  22. 22.
    J.W. Yoon, C.B. Lee, and S.B. Jung, Mater. Trans. 43, 1821 (2002).CrossRefGoogle Scholar
  23. 23.
    L.T. Chen and C.M. Chen, J. Mater. Res. 21, 962 (2006).CrossRefGoogle Scholar
  24. 24.
    M.G. Cho, K.W. Paik, H.M. Lee, S.W. Booh, and T.G. Kim, J. Electron. Mater. 36, 35 (2006).CrossRefGoogle Scholar
  25. 25.
    C.C. Chi, L.C. Tsao, C.W. Tsao, and T.H. Chuang, J. Mater. Eng. Perform. 17, 134 (2008).CrossRefGoogle Scholar
  26. 26.
    Z. Mei, M. Kaufmann, A. Eslambolchi, and P. Johnson, in Electronic Components and Technology Conference (1998), pp. 952–961Google Scholar
  27. 27.
    A.M. Minor and J.W. Morris Jr., J. Electron. Mater. 29, 1170 (2000).CrossRefGoogle Scholar
  28. 28.
    S.S. Ha, J. Park, and S.B. Jung, Mater. Trans. 52, 1553 (2011).CrossRefGoogle Scholar
  29. 29.
    C.M. Chen and S.W. Chen, J. Mater. Res. 18, 1293 (2003).CrossRefGoogle Scholar
  30. 30.
    C. Fuchs, T. Schreck, and M. Kaloudis, J. Mater. Sci. 47, 4036 (2012).CrossRefGoogle Scholar
  31. 31.
    D. Yao and J.K. Shang, Metall. Mater. Trans. A 26, 2677 (1995).CrossRefGoogle Scholar
  32. 32.
    Y.C. Chan, P.L. Tu, C.W. Tang, K.C. Hung, and J.K.L. Lai, IEEE Trans. Adv. Packag. 24, 25 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Woo-Ram Myung
    • 1
  • Yongil Kim
    • 1
  • Kyung-Yeol Kim
    • 2
  • Seung-Boo Jung
    • 2
  1. 1.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonSouth Korea
  2. 2.School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations