Journal of Electronic Materials

, Volume 45, Issue 6, pp 3200–3207 | Cite as

Thickness-, Composition-, and Magnetic-Field-Dependent Complex Impedance Spectroscopy of Granular-Type-Barrier Co/Co-Al2O3/Co MTJs

  • Nguyen Anh Tuan
  • Nguyen Tuan Anh
  • Nguyen Tuyet Nga
  • Nguyen Anh Tue
  • Giap  Van Cuong
Article
  • 44 Downloads

Abstract

The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Cox(Al2O3)1−x(t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.

Keywords

Granular-type-barrier MTJ hybrid-type MTJ complex impedance spectroscopy impedance response ac spin-dependent transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).CrossRefGoogle Scholar
  2. 2.
    S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Berers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rppls, P.L. Trouilloud, R.A. Wanner, and W.J. Gallagher, J. Appl. Phys. 85, 5828 (1999).CrossRefGoogle Scholar
  3. 3.
    E.Y. Tsymbal, O.L. Mryasov, and P.R. LeClair, J. Phys. Condens. Matter 15, R109 (2003).CrossRefGoogle Scholar
  4. 4.
    S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, Appl. Phys. Lett. 97, 242102 (2010).CrossRefGoogle Scholar
  5. 5.
    R. Liu, S.-H. Yang, X. Jiang, T. Topuria, P.M. Rice, C. Rettner, and S. Parkin, Appl. Phys. Lett. 100, 012401 (2012).CrossRefGoogle Scholar
  6. 6.
    H. Fujimori, S. Mitani, and S. Ohnuma, Mater. Sci. Eng. B 31, 219 (1995).CrossRefGoogle Scholar
  7. 7.
    L.F. Schelp, A. Fert, F. Fettar, P. Holody, S.F. Lee, J.L. Maurice, F. Petroff, and A. Vaurès, Phys. Rev. B 56, R5747 (1997).CrossRefGoogle Scholar
  8. 8.
    J.A.M. Santos, G.N. Kakazei, J.B. Sousa, S. Cardoso, P.P. Freitas, YuG Pogorelov, and E. Snoeck, J. Magn. Magn. Mater. 242–245, 485 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Stopa, Phys. Rev. Lett. 88, 146802 (2002).CrossRefGoogle Scholar
  10. 10.
    W.A. Coish and F. Qassemi, Phys. Rev. B 84, 245407 (2011).CrossRefGoogle Scholar
  11. 11.
    N.T. Anh, G.V. Cuong, and N.A. Tuan, J. Magn. Magn. Mater. 374, 463 (2015).CrossRefGoogle Scholar
  12. 12.
    N.A. Tuan, T.T. Dung, and P.L. Minh, J. Magn. Magn. Mater. 304, e321 (2006).CrossRefGoogle Scholar
  13. 13.
    N.T. Anh, N.A. Tuan, N.T. Nga, N.A. Tue, and G.V. Cuong, Curr. Appl. Phys. 14, 13895 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Barnaś and I. Weymann, J. Phys.: Condens. Matter 20, 423202 (2008).Google Scholar
  15. 15.
    L.F. Schelp, E.L. Rosa, J.-L. Maurice, F. Petroff, and A. Vaurés, J. Magn. Magn. Mater. 205, 170 (1999).CrossRefGoogle Scholar
  16. 16.
    H. Bakkali, M. Dominguez, X. Batlle, and A. Labarta, J. Phys. D Appl. Phys. 48, 335306 (2015).CrossRefGoogle Scholar
  17. 17.
    B. Abeles, P. Sheng, M.D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975).CrossRefGoogle Scholar
  18. 18.
    J.R. MacDonald, Ann. Biomed. Eng. 20, 289 (1992).CrossRefGoogle Scholar
  19. 19.
    M.B.A. Jalil, J. Appl. Phys. 91, 7628 (2002).CrossRefGoogle Scholar
  20. 20.
    S. Mitani, S. Takahashi, K. Takanashi, K. Yakushiji, S. Maekawa, and H. Fujimori, Phys. Rev. Lett. 81, 2799 (1998).CrossRefGoogle Scholar
  21. 21.
    B.J. Hattink, A. Labarta, M. Garcı´a del Muro, X. Batlle, F. Sánchez, and M. Varela, Phys. Rev. B 67, 033402 (2003).CrossRefGoogle Scholar
  22. 22.
    J.R Macdonald and W.B. Johnson, Impedance Spectroscopy—Theory, Experiment, and Applications, 2nd edn., ed. By E. Barsoukov, J.R. Macdonald (Wiley, Hoboken, NJ, 2005). pp. 1–26.Google Scholar
  23. 23.
    M.E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy (New Jersey: Wiley, 2008), p. 21.CrossRefGoogle Scholar
  24. 24.
    M. Chshiev, D. Stoeffler, A. Vedyayev, and K. Ounadjela, Europhys. Lett. (EPL) 58, 257 (2002).CrossRefGoogle Scholar
  25. 25.
    A.K. Jonscher, Nature 267, 673 (1977).CrossRefGoogle Scholar
  26. 26.
    D. Weinmann, W. Hausler, and B. Kramer, Phys. Rev. Lett. 77, 984 (1995).CrossRefGoogle Scholar
  27. 27.
    T.V. Pham, S. Miwa, D. Bang, T. Nozaki, F. Bonell, E. Tamura, N. Mizuochi, T. Shinjo, and Y. Suzuki, Solid State Commun. 183, 18 (2014).CrossRefGoogle Scholar
  28. 28.
    N. Bonanos, B.C.H. Steele, and E.P. Butler, Impedance Spectroscopy—Theory, Experiment, and Applications, 2nd edn, eds. by E. Barsoukov and J. R. Macdonald (Wiley, Hoboken, NJ, 2005), pp. 205–263.Google Scholar
  29. 29.
    C. Derek Sinclair, Bol. Soc. Esp. Cerám. Vidrio 34, 55 (1995).Google Scholar
  30. 30.
    H. Imamura, H. Aoki, and P.A. Maksym, Phys. Rev. B 57, R4257 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Nguyen Anh Tuan
    • 1
  • Nguyen Tuan Anh
    • 1
  • Nguyen Tuyet Nga
    • 2
  • Nguyen Anh Tue
    • 2
  • Giap  Van Cuong
    • 1
    • 3
  1. 1.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam
  2. 2.Institute of Engineering Physics (IEP)Hanoi University of Science and Technology (HUST)HanoiVietnam
  3. 3.Faculty of Basic SciencesHung Yen University of Technology and Education (UTEHY)Khoai ChauVietnam

Personalised recommendations