Advertisement

Journal of Electronic Materials

, Volume 45, Issue 3, pp 1987–1991 | Cite as

Vanadium Pentoxide Alloyed with Graphite for Thin-Film Thermal Sensors

  • C. Bianchi
  • L. M. Ferreira
  • J. Loureiro
  • A. Rodrigues
  • P. Duarte
  • A. C. Baptista
  • I. M. Ferreira
Article

Abstract

The thermoelectric (TE) properties of vanadium pentoxide (V2O5) alloyed with graphite (G) were studied as a function of its incorporation percentage. Variable weight percentages of graphite powder (0–50%) were added to V2O5 powder and their mixtures were evaporated by a thermal evaporation technique to form thin films with a thickness in the range of 30–80 nm. In the infrared wavelength region, the transmittance of the obtained films increased as the G percentage was increased, while in the visible range, it decreased with G up to 10%. The TE properties were improved when G was in the range of 10–30%, while it decreased for the other percentages: Seebeck coefficient (S) changed from 0.6 mV/K to 0.9 mV/K and was zero with a G of 50%; the electrical conductivity varied slightly from 5 (Ωm)−1 to 0.7 (Ωm)−1 while the mobility improved from 0.07 cm2/V s to 1.5 cm2/V s and the respective carrier concentration was reduced, from 1 × 1018 cm−3 to 4 × 1016 cm−3. These films were applied as temperature sensors evaluating the thermovoltage as a function of thermal gradient between two electrodes, in which one was maintained at room temperature.

Keywords

Thermoelectric V2O5 graphite temperature sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Prog. Mater. Sci. 58, 1443 (2013).CrossRefGoogle Scholar
  2. 2.
    R. Santos, J. Loureiro, A. Nogueira, E. Elangovan, J.V. Pinto, J.P. Veiga, T. Busani, E. Fortunato, R. Martins, and I. Ferreira, Appl. Surf. Sci. 282, 590 (2013).CrossRefGoogle Scholar
  3. 3.
    J. Loureiro, J.R. Santos, A. Nogueira, F. Wyczisk, L. Divay, S. Reparaz, F. Alzina, C.M. Sotomayor Torres, J. Cuffe, F. Montemor, R. Martins, and I. Ferreira, J. Mater. Chem. A 2, 6456 (2014).CrossRefGoogle Scholar
  4. 4.
    D. De Bruyker, M.I. Recht, F.E. Torres, A.G. Bell, and R.H. Bruce, IEE Sens. 2010, 2358 (2010).Google Scholar
  5. 5.
    R.T. Rajendra Kumar, B. Karunagaran, D. Mangalaraj, S.K. Narayandass, P. Manoravi, M. Joseph, and V. Gopal, Sens. Actuat. A-Phys. 107, 62 (2003).CrossRefGoogle Scholar
  6. 6.
    G.M. Gouda and C.L. Nagendra, Sens. Actuat. A-Phys. 190, 181 (2013).CrossRefGoogle Scholar
  7. 7.
    P. Vaqueiro and A.V. Powell, J. Mater. Chem. 20, 9577 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • C. Bianchi
    • 1
  • L. M. Ferreira
    • 1
  • J. Loureiro
    • 1
  • A. Rodrigues
    • 1
  • P. Duarte
    • 1
  • A. C. Baptista
    • 1
  • I. M. Ferreira
    • 1
  1. 1.CENIMAT/I3N and UNINOVA, Departamento de Ciência dos Materiais, Faculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal

Personalised recommendations