Advertisement

Journal of Electronic Materials

, Volume 45, Issue 6, pp 2891–2894 | Cite as

Simulation of Thermal Fields in SPS Fabrication of Segmented Thermoelectric Legs

  • L. P. Bulat
  • A. V. Novotelnova
  • A. Asach
  • A. S. TukmakovaEmail author
  • V. Osvenskii
  • Y. Parchomenko
  • L. Zhao
  • Q. Zongrui
Article

Abstract

Spark plasma sintering (SPS) enables preparation of bulk homogeneous nanothermoelectrics with improved figure of merit, offering a potential route to production of segmented legs from layerwise powder in one sintering cycle. However, it is rather difficult to create appropriate thermal, electric, and pressure conditions to obtain optimal sample parameters. The sintering process of an example segmented leg with Bi2Te3, PbTe, and Mg2(Si0.4Sn0.6)0.993Sb0.007 parts using an SPS-511S installation has been simulated. The temperature distribution in the volume of a segmented sample with the stated composition has been obtained as a function of its geometry, as parameterized by the diameter-to-height ratio. The optimal ratio values, correlating with greater temperature difference along the sample length, have been determined. The results can be used to formulate recommendations for achieving better SPS processing conditions for fabrication of segmented thermoelectric legs. These legs have good performance due to the significant temperature difference in the leg during sintering.

Keywords

Thermoelectricity segmented materials figure of merit spark plasma sintering nanothermoelectrics silicides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Poudel, Q. Hao, Ma Yi, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).Google Scholar
  2. 2.
    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schiering, J. Rathel, and M. Herrmann, Adv. Eng. Mater. 16, 7 (2014).CrossRefGoogle Scholar
  3. 3.
    V.T. Bublik, I.A. Drabkin, V.V. Karataev, M.G. Lavrentev, V.B. Osvensky, Y.N. Parkhomenko, G.I. Pivovarov, A.I. Sorokin, and N.Y. Tabachkova, Mater. Electron. Tech. 3, 10 (2012).Google Scholar
  4. 4.
    L.P. Bulat, I.A. Drabkin, V.V. Karatayev, V.B. Osvenskii, Y.N. Parkhomenko, D.A. Pshenay-Severin, and A.I. Sorokin, J. Electron. Mater. (2014). doi: 10.1007/s11664-014-2988-6.Google Scholar
  5. 5.
    S. Fischer, C. Osorio, N.E. Williams, S. Ayas, H. Silva, and A. Gokirmak, Appl. Phys. Lett. 113, 164902 (2013).Google Scholar
  6. 6.
    L.P. Bulat, I.A. Nefedova, A.V. Novotelnova, I.A. Drabkin, V.B. Osvenskii, D.A. Pshenay-Severin, A.I. Sorokin, A.S., and Y.N. Parkhomenko, Tech. Phys. Lett. 40, 11 (2014).Google Scholar
  7. 7.
    L.P. Bulat, A.V. Novotelnova, I.A. Drabkin, V.B. Osvenskii, D.A. Pshenay-Severin, A.I. Sorokin, and A.S. Tukmakova, Tech. Phys. Lett. 86, 1 (2016).Google Scholar
  8. 8.
    E.A. Olevsky, C. Garcia-Cardona, W.L. Bradbury, C.D. Haines, D.G. Martin, and D. Kapoor, J. Am. Ceram. Soc. (2012). doi: 10.1111/j.1551-2916.2012.05096.x.Google Scholar
  9. 9.
    E.A. Olevsky, W.L. Bradbury, C.D. Haines, D.G. Martin, and D. Kapoor, J. Am. Ceram. Soc. (2012). doi: 10.1111/j.1551-2916.2012.05203.x.Google Scholar
  10. 10.
    L.P. Bulat, A.V. Novotelnova, I.A. Nefedova, D.A. Pshenai-Severin, and U.G. Gurevich, Sci. Tech. J. Inf. Technol. Mech. Opt. 5 (2014).Google Scholar
  11. 11.
    L.P. Bulat, A.V. Novotelnova, I.A. Drabkin, V.B. Osvenskiy, Y.N. Parchomenko, D.A Pshenai-Severin, A.I. Sorokin, and I.A. Nefedova, Tech. Phys. Lett. 40, 972 (2014).Google Scholar
  12. 12.
    U.I. Ravich, B.A. Efimova, and I.A. Smirnov, Lead-Based Chalcogenides Research Methods (Moscow: Nauka, 1968), pp. 195–211.Google Scholar
  13. 13.
    Y.B. Magomedov, G.G. Gadzhiev, and Z.M. Omarov, Faz. Perekh. Uporyad. Sost. Nov. Mater. 9, 1 (2013).Google Scholar
  14. 14.
    Y. Gelbstein, B. Dado, O. Ben-Yehuda, Y. Sadia, Z. Dashevsky, and M.P. Dariel, J. Electron. Mater. 39, 9 (2010).CrossRefGoogle Scholar
  15. 15.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, AYu Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  16. 16.
    G. Oliver, G.J. Jesus, D. Benjamin, and K. Tobias, Adv. Eng. Mater. 4, 830 (2014).Google Scholar
  17. 17.
    L.P. Bulat, I.A. Drabkin, V.V. Karatayev, V.B. Osvenskii, Y.N. Parkhomenko, M.G. Lavrentev, A.I. Sorokin, D.A. Pshenai-Severin, V.D. Blank., G.I. Pivovarov, V.T. Bublik, and N.Y. Tabachkova, J. Electron. Mater. 42, 7 (2013).Google Scholar
  18. 18.
    I.A. Drabkin, V.B. Osvenskii, Y.N. Parkhomenko, A.I. Sorokin, G.I. Pivovaro, and L.P. Bulat, J. Thermoelectr. 3, 35 (2013).Google Scholar
  19. 19.
    U. Anselmi-Tamburinia, S. Gennarib, J.E. Garaya, and Z.A. Munir, Mater. Sci. Eng. A 394, 139 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • L. P. Bulat
    • 1
  • A. V. Novotelnova
    • 1
  • A. Asach
    • 1
  • A. S. Tukmakova
    • 1
    Email author
  • V. Osvenskii
    • 2
  • Y. Parchomenko
    • 2
  • L. Zhao
    • 3
  • Q. Zongrui
    • 3
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.GIREDMET Ltd.MoscowRussia
  3. 3.Changchun University of Science and TechnologyChangchunChina

Personalised recommendations