Journal of Electronic Materials

, Volume 45, Issue 3, pp 1894–1899

Ba6−3xNd8+2xTi18O54 Tungsten Bronze: A New High-Temperature n-Type Oxide Thermoelectric

  • Feridoon Azough
  • Robert Freer
  • Stephen R. Yeandel
  • Jakub D. Baran
  • Marco Molinari
  • Stephen C. Parker
  • Emmanuel Guilmeau
  • Demie Kepaptsoglou
  • Quentin Ramasse
  • Andy Knox
  • Duncan Gregory
  • Douglas Paul
  • Manosh Paul
  • Andrea Montecucco
  • Jonathan Siviter
  • Paul Mullen
  • Wenguan Li
  • Guang Han
  • Elena A. Man
  • Hasan Baig
  • Tapas Mallick
  • Nazmi Sellami
  • Gao Min
  • Tracy Sweet
Open Access
Article

Abstract

Semiconducting Ba6−3xNd8+2xTi18O54 ceramics (with x = 0.00 to 0.85) were synthesized by the mixed oxide route followed by annealing in a reducing atmosphere; their high-temperature thermoelectric properties have been investigated. In conjunction with the experimental observations, atomistic simulations have been performed to investigate the anisotropic behavior of the lattice thermal conductivity. The ceramics show promising n-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical conductivity, and temperature-stable, low thermal conductivity; For example, the composition with x = 0.27 (i.e., Ba5.19Nd8.54Ti18O54) exhibited a Seebeck coefficient of S1000K = 210 µV/K, electrical conductivity of σ1000K = 60 S/cm, and thermal conductivity of k1000K = 1.45 W/(m K), leading to a ZT value of 0.16 at 1000 K.

Keywords

Oxide ceramic tungsten bronze titanate thermal conductivity thermoelectric molecular dynamics modelling 

References

  1. 1.
    D.M. Rowe, Renew. Energy 16, 1251 (1999).CrossRefGoogle Scholar
  2. 2.
    K. Koumoto, R. Funahashi, E. Gilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, and C. Wen, J. Am. Ceram. Soc. 95, 1 (2012).CrossRefGoogle Scholar
  3. 3.
    T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63, 113104 (2001).CrossRefGoogle Scholar
  4. 4.
    S. Ohta, T. Nimura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).CrossRefGoogle Scholar
  5. 5.
    C.Y. Gao, H.R. Xia, J.Q. Xu, C.L. Zhou, H.J. Zhang, and J.Y. Wang, Appl. Phys. Lett. 92, 231905 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Lee, R.H.T. Wilke, S. Trolier-McKinstry, S. Zhang, and C.A. Randall, Appl. Phys. Lett. 96, 031910 (2010).CrossRefGoogle Scholar
  7. 7.
    L. Yi, L. Jian, W. Chun-Lei, S. Wen-Bin, Z. Yuan-hu, L. Ji-Chao, and M. Liang-Mo, Chin. Phys. B 24, 047201 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, and S. Susuki, Jpn. Appl. Phys. 32, 4323 (1993).CrossRefGoogle Scholar
  9. 9.
    M. Valant, D. Suvorov, and D. Kolar, J. Mater. Res. 11, 928 (1996).CrossRefGoogle Scholar
  10. 10.
    C.C. Tang, M.A. Roberts, F. Azough, C. Leach, and R. Freer, J. Mater. Res. 17, 675 (2002).CrossRefGoogle Scholar
  11. 11.
    H. Ohsato and M. Imaeda, Mater. Chem. Phys. 79, 208 (2003).CrossRefGoogle Scholar
  12. 12.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  13. 13.
    P. Canepa, PhD Thesis University of Kent (2012), http://ethos.bl.uk/OrderDetails.do?did=1&uin=uk.bl.ethos.580391.
  14. 14.
    M.S. Green, J. Chem. Phys. 22, 398 (1954).CrossRefGoogle Scholar
  15. 15.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).CrossRefGoogle Scholar
  16. 16.
    H. Ohsato, T. Ohhashi, S. Nishigaki, and T. Okuda, Jpn. J. Appl. Phys. 32, 4323 (1993).CrossRefGoogle Scholar
  17. 17.
    W. Tian and R. Yang, CMES 24, 123 (2008).Google Scholar
  18. 18.
    G. Li, J. Yang, Y. Xiao, L. Fu, M. Liu, and J. Peng, J. Am. Ceram. Soc. 96, 2703 (2013).CrossRefGoogle Scholar
  19. 19.
    H. Okudera, H. Nakamura, H. Toraya, and H. Ohsat, J. Solid State Chem. 142, 336 (1999).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Feridoon Azough
    • 1
  • Robert Freer
    • 1
  • Stephen R. Yeandel
    • 2
  • Jakub D. Baran
    • 2
  • Marco Molinari
    • 2
  • Stephen C. Parker
    • 2
  • Emmanuel Guilmeau
    • 3
  • Demie Kepaptsoglou
    • 4
  • Quentin Ramasse
    • 4
  • Andy Knox
    • 5
  • Duncan Gregory
    • 5
  • Douglas Paul
    • 5
  • Manosh Paul
    • 5
  • Andrea Montecucco
    • 5
  • Jonathan Siviter
    • 5
  • Paul Mullen
    • 5
  • Wenguan Li
    • 5
  • Guang Han
    • 5
  • Elena A. Man
    • 5
  • Hasan Baig
    • 6
  • Tapas Mallick
    • 6
  • Nazmi Sellami
    • 6
  • Gao Min
    • 7
  • Tracy Sweet
    • 7
  1. 1.University of ManchesterManchesterUK
  2. 2.University of BathBathUK
  3. 3.Laboratoire CRISMATCaenFrance
  4. 4.SuperSTEM LaboratoryDaresburyUK
  5. 5.University of GlasgowGlasgowUK
  6. 6.Exeter UniversityExeterUK
  7. 7.Cardiff UniversityCardiffUK

Personalised recommendations