Journal of Electronic Materials

, Volume 45, Issue 3, pp 1875–1885 | Cite as

Magnetic-Field Dependence of Thermoelectric Properties of Sintered Bi90Sb10 Alloy

  • Masayuki Murata
  • Atsushi Yamamoto
  • Yasuhiro Hasegawa
  • Takashi Komine


The magnetic-field dependence of the thermoelectric properties and dimensionless figure of merit (ZT) of a sintered Bi90Sb10 alloy were experimentally and theoretically evaluated. The Bi-Sb alloy was synthesized in a quartz ampule using the melting method, and the resultant ingot was then ground via ball milling. A sintered Bi90Sb10 alloy with a particle size in the range of several to several tens of micrometers was prepared using the spark plasma sintering (SPS) method. The magnetic-field dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity were experimentally evaluated at temperatures of 77–300 K for magnetic fields of up to 2.9 T. The results showed that ZT increased by 37% at 300 K under a 2.5-T magnetic field. A theoretical calculation of the magneto-Seebeck coefficient based on the Boltzmann equation with a relaxation time approximation was also performed. Hence, the experimental result for the magneto-Seebeck coefficient of the Bi90Sb10 alloy at 300 K was qualitatively and quantitatively explained. Specifically, the carrier scattering mechanism was shown to be acoustic phonon potential scattering and the carrier mobility ratio between the L- and T-points was found to be 3.3, which corresponds to the characteristics of a single crystal. It was concluded that the effect of the magnetic field on the Seebeck coefficient was demonstrated accurately using the theoretical calculation model.


Bi-Sb alloy thermoelectrics magneto-Seebeck effect Boltzmann equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank Mr. Ryoei Homma of Saitama University and Mr. Masaru Kunii and Mr. Hirotaka Nishiate of AIST for their assistance with this research. This research was supported in part by JSPS KAKENHI (Grant numbers: 26886016 and 15H04142) and the Inamori Foundation, Izumi Science and Technology Foundation.


  1. 1.
    G.E. Smith and R. Wolfe, J. Appl. Phys. 33, 841 (1962).CrossRefGoogle Scholar
  2. 2.
    B. Lenoir, H. Scherrer, and T. Caillat, Semicond. Semimet. 69, 101 (2001).CrossRefGoogle Scholar
  3. 3.
    S. Tang and M.S. Dresselhaus, J. Mater. Chem. C 2, 4710 (2014).CrossRefGoogle Scholar
  4. 4.
    R. Wolfe and G.E. Smith, Appl. Phys. Lett. 1, 5 (1962).CrossRefGoogle Scholar
  5. 5.
    H. Scherrer and S. Scherrer, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006), p. 27.Google Scholar
  6. 6.
    M.V. Vedernikov and V.L. Kuznetsov, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995), p. 609.Google Scholar
  7. 7.
    W.M. Yim and A. Amith, Solid-State Electrons 15, 1141 (1972).CrossRefGoogle Scholar
  8. 8.
    P. Jandl and U. Birkholz, J. Appl. Phys. 76, 7351 (1994).CrossRefGoogle Scholar
  9. 9.
    V.M. Grabov and O.N. Uryupin, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006), p. 28.Google Scholar
  10. 10.
    S. Tanuma and M. Sakurai, J. Adv. Sci. 7, 163 (1995).CrossRefGoogle Scholar
  11. 11.
    M.E. Ertl, G.R. Pfister, and H.J. Goldsmid, Brit. J. Appl. Phys. 14, 161 (1963).CrossRefGoogle Scholar
  12. 12.
    C.B. Thomas and H.J. Goldsmid, Phys. Lett. 27A, 369 (1968).CrossRefGoogle Scholar
  13. 13.
    T. Komine, Y. Ishikawa, A. Suzuki, H. Shirai, and Y. Hasegawa, Proceedings of 22nd International Conference on Thermoelectrics, p. 500 (2003).Google Scholar
  14. 14.
    Y. Hasegawa, T. Komine, Y. Ishikawa, A. Suzuki, and H. Shirai, Jpn. J. Appl. Phys. 43, 35 (2004).CrossRefGoogle Scholar
  15. 15.
    T. Teramoto, T. Komine, S. Yamamoto, M. Kuraishi, R. Sugita, Y. Hasegawa, and H. Nakamura, J. Appl. Phys. 104, 053714 (2008).CrossRefGoogle Scholar
  16. 16.
    E.E. Mendez, Ph.D. thesis, Massachusetts Institute of Technology (1979).Google Scholar
  17. 17.
    B. Leinoir, A. Demouge, D. Perrin, H. Sherrer, S. Scherrer, M. Cassart, and J.P. Michenaud, J. Phys. Chem. Solids 56, 99 (1995).CrossRefGoogle Scholar
  18. 18.
    W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci. 22, 1313 (2011).Google Scholar
  19. 19.
    Y. Hasegawa, D. Nakamura, M. Murata, H. Yamamoto, and T. Komine, Rev. Sci. Ins. 81, 094901 (2010).CrossRefGoogle Scholar
  20. 20.
    R. Homma, Y. Hasegawa, H. Terakado, H. Morita, and T. Komine, Jpn. J. Appl. Phys. 54, 026602 (2015).CrossRefGoogle Scholar
  21. 21.
    P. Cucka and C.S. Barrett, Acta Cryst. 15, 865 (1962).CrossRefGoogle Scholar
  22. 22.
    C.L. Chien, F.Y. Yang, K. Liu, D.H. Reich, and P.C. Searson, Phys. Rev. Lett. 82, 3328 (1999).CrossRefGoogle Scholar
  23. 23.
    C. Kittel, Introduction to Solid State Physics (New York: Wiley, 1966).Google Scholar
  24. 24.
    G.A. Saunders and Z. Sumengen, Proc. R. Soc. Lond. A 329, 453 (1972).CrossRefGoogle Scholar
  25. 25.
    Y. Hasegawa, I. Ishikawa, T. Saso, H. Shirai, H. Morita, T. Komine, and H. Nakamura, Phys. B 382, 140 (2006).CrossRefGoogle Scholar
  26. 26.
    M.S. Narayana and N.G. Krishna, Phys. Stat. Sol. (a) 202, 2731 (2005).CrossRefGoogle Scholar
  27. 27.
    B.S. Farag and S. Tanuma, ISSP Technical Report, Ser. B No. 18 (1976)Google Scholar
  28. 28.
    C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, J. Appl. Phys. 34, 144 (1963).CrossRefGoogle Scholar
  29. 29.
    R. Wolfe and G.E. Smith, Phys. Rev. 129, 1086 (1963).CrossRefGoogle Scholar
  30. 30.
    B. Lax, Rev. Mod. Phys. 30, 122 (1958).CrossRefGoogle Scholar
  31. 31.
    J.P. Heremans and O.P. Hansen, J. Phys. C: Solid State Phys. 12, 3483 (1979).CrossRefGoogle Scholar
  32. 32.
    Y.M. Lin, Master’s thesis, Massachusetts Institute of Technology (2000)Google Scholar
  33. 33.
    N.B. Brandt and S.M. Chudinov, Sov. Phys. JETP 32, 815 (1971).Google Scholar
  34. 34.
    B. Lenoir, M. Cassart, J.-P. Michenaud, H. Scherrer, and S. Scherrer, J. Phys. Chem. Solids 57, 89 (1996).CrossRefGoogle Scholar
  35. 35.
    J. Heremans, D.L. Partin, C.M. Thruch, G. Karczewski, M.S. Richardson, and J.K. Furdyna, Phys. Rev. B 48, 11329 (1993).CrossRefGoogle Scholar
  36. 36.
    Y. Hasegawa, H. Nakano, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, J. Appl. Phys. 101, 033704 (2007).CrossRefGoogle Scholar
  37. 37.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Masayuki Murata
    • 1
  • Atsushi Yamamoto
    • 1
  • Yasuhiro Hasegawa
    • 2
  • Takashi Komine
    • 3
  1. 1.iECONational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Faculty of EngineeringSaitama UniversitySakuraJapan
  3. 3.Faculty of EngineeringIbaraki UniversityHitachiJapan

Personalised recommendations