Journal of Electronic Materials

, Volume 45, Issue 3, pp 1871–1874 | Cite as

The Influence of Weak Tin Doping on the Thermoelectric Properties of Zinc Antimonide

  • A. A. Shabaldin
  • L. V. Prokof’eva
  • G. J. Snyder
  • P. P. Konstantinov
  • G. N. Isachenko
  • A. V. Asach
Article

Abstract

ZnSb would be a good thermoelectric material with carrier concentration above 1019/cm3, but unfortunately this has been shown to be difficult to achieve, particularly with Sn as a dopant. Two series ZnSb samples doped with Sn and ZnSn were prepared using hot-pressing technics, and their thermoelectric properties were investigated in the temperature range from 300 K to 700 K. The tin content of the samples was in the range from 0.1 to 0.5 at.%. Surprisingly, samples with lower tin content achieved higher carrier concentration, which is beneficial for thermoelectric performance. Samples doped with 0.1 at.% Sn achieved Hall carrier concentration above 1 × 1019/cm3, reaching ZT of 0.9, while for samples doped with 0.5 at.% Sn, the Hall carrier concentration was close to the hole concentration of pure ZnSb. Also, by analyzing hysteresis present in the heating–cooling cycles, we conclude that the role of intrinsic defects in ZnSb is important and that these defects clearly determine the ability of ZnSb to achieve ZT near 1.

Keywords

Zinc antimonide transport properties thermoelectric figure-of-merit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.R. Heikes and R.W. Ure, eds., Thermoelectricity: Science and Engineering (New York: Interscience, 1961).Google Scholar
  2. 2.
    ASM International, Binary Alloy Phase Diagrams, 2nd ed. (Materials Park: ASM International, 2003).Google Scholar
  3. 3.
    H. Kmoiya, K. Masumoto, and H.Y. Fan, Phys. Rev. 133, A1679 (1964).CrossRefGoogle Scholar
  4. 4.
    P.J. Shaver and J. Blair, Phys. Rev. 141, 649 (1966).CrossRefGoogle Scholar
  5. 5.
    I.V. Dakhovskii, E.V. Osipov, and I.V. Potykevich, Sov. Phys. Semicond. 15, 423 (1981).Google Scholar
  6. 6.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  7. 7.
    C. Okamura, T. Ueda, and K. Hasezaki, Mater. Trans. 51, 860 (2010).CrossRefGoogle Scholar
  8. 8.
    M.I. Fedorov, L.V. Prokof’eva, D.A. Pshenay-Severin, A.A. Shabaldin, and P.P. Konstantinov, J. Electron. Mater. 43, 2314 (2014).CrossRefGoogle Scholar
  9. 9.
    D.-B. Xiong, N.L. Okamoto, and H. Inui, Scr. Mater. 69, 397 (2013).CrossRefGoogle Scholar
  10. 10.
    K. Valset, P.H.M. Böttger, J. Taftø, and T.G. Finstad, J. Appl. Phys. 111, 023703 (2012).CrossRefGoogle Scholar
  11. 11.
    Q. Guo and S. Luo, Funct. Mater. Lett. 8, 1550028 (2015).CrossRefGoogle Scholar
  12. 12.
    P.H.M. Bottger, G.S. Pomrehn, G.J. Snyder, and T.G. Finstad, Phys. Status Solidi. A 208, 2753–2759 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Ito, Y. Ohishi, H. Muta, K. Kurosaki, and S. Yamanaka, MRS Proceedings, vol. 1314, mrsf10-1314-ll08-24 (2011)Google Scholar
  14. 14.
    M.V. Vedernikov, P.P. Konstantinov, and A.T. Burkov, Eighth International Conference on Thermoelectric Energy Conversion (INPL, Nancy, 1989), p. 45.Google Scholar
  15. 15.
    A.V. Petrov, Method for Measuring of Thermal Conductivity of Semiconductors at High Temperatures, Thermoelectrical Properties of Semiconductors (Moscow: USSR Academy of Science, 1963) in Russian.Google Scholar
  16. 16.
    K.A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L.D. Chen, M.I. Fedorov, E. Muller, B.B. Iversena, and G.J. Snyder, Energy Environ. Sci. 8, 423–435 (2015).CrossRefGoogle Scholar
  17. 17.
    L.V. Prokofieva, P.P. Konstantinov, A.A. Shabaldin, D.A. Pshenai-Severin, A.T. Burkov, and M.I. Fedorov, Semiconductors 48, 1571 (2014).CrossRefGoogle Scholar
  18. 18.
    A.A. Shabaldin, L.V. Prokof’eva, P.P. Konstantinov, A.T. Burkov, and M.I. Fedorov, Mater. Today: Proceedings 2, 699 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • A. A. Shabaldin
    • 1
  • L. V. Prokof’eva
    • 1
  • G. J. Snyder
    • 2
  • P. P. Konstantinov
    • 1
  • G. N. Isachenko
    • 1
    • 3
  • A. V. Asach
    • 3
  1. 1.Ioffe Physical-Technical Institute of the Russian Academy of SciencesSaint-PetersburgRussia
  2. 2.Department of Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  3. 3.ITMO UniversitySaint-PetersburgRussia

Personalised recommendations