Journal of Electronic Materials

, Volume 45, Issue 2, pp 1094–1100 | Cite as

Synthesis, Transport and Magnetic Properties of Ba-Co-Ge Clathrates



Ba-Co-Ge intermetallic clathrates were synthesized in both type-I and chiral-type crystal structures to investigate thermoelectric and physical properties. Seebeck coefficients, thermal conductivities, electrical resistivities, and Hall coefficients were measured, as well as specific heat and magnetic susceptibility. Type-I Ba8CoxGe46−y was formed with a large number of spontaneous vacancies, similar to a Zintl condition, but without the vacancy ordered superstructure of Ba8Ge43. However, the vacancies for this composition do not moderate the carrier density as expected from Zintl electron balancing. Instead, the physical properties point to a complex Fermi surface property with a large effective carrier density, a behavior consistent with other materials close to Ba8Ge43. In the case of chiral samples, Co substitution strongly suppresses the temperature of only the lower of the two structural transformations. Susceptibility and specific heat measurements, coupled with the measured transport properties, demonstrate that the electron densities of states near the Fermi energy change very little in the transformations, a significant reduction in the effect of these transitions compared to the case of unsubstituted Ba8Ge25.


Clathrates thermoelectric materials magnetization transport properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Robert A. Welch Foundation, Grant No. A-1526.


  1. 1.
    G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998).CrossRefGoogle Scholar
  2. 2.
    M. Christensen, S. Johnsen, and B.B. Iversen, Dalton Trans. 39, 978 (2010).CrossRefGoogle Scholar
  3. 3.
    B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, and D. Mandrus, Phys. Rev. B 63, 245113 (2001).CrossRefGoogle Scholar
  4. 4.
    J.H. Ross Jr. and Y. Li, Nanoscale Magnetic Materials and Applications, Vol. 4, ed. J.P. Liu, E. Fullerton, O. Gutfleisch, and D. Sellmyer (New York: Springer, 2009), p. 105.CrossRefGoogle Scholar
  5. 5.
    A. Prokofiev, A. Sidorenko, K. Hradil, M. Ikeda, R. Svagera, M. Waas, H. Winkler, K. Neumaier, and S. Paschen, Nat. Mater. 12, 1096 (2013).CrossRefGoogle Scholar
  6. 6.
    T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Rev. Mod. Phys. 86, 669 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Pailhès, H. Euchner, V.M. Giordano, R. Debord, A. Assy, S. Gomès, A. Bosak, D. Machon, S. Paschen, and M. de Boissieu, Phys. Rev. Lett. 113, 025506 (2014).CrossRefGoogle Scholar
  8. 8.
    T. Tadano, Y. Gohda, and S. Tsuneyuki, Phys. Rev. Lett. 114, 095501 (2015).CrossRefGoogle Scholar
  9. 9.
    G. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995), DOI:10.1201/9781420049 718.ch34 Google Scholar
  10. 10.
    Zintl E. Zintl, Angew. Chem. 52, 1 (1939).CrossRefGoogle Scholar
  11. 11.
    H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, and L. Häming, J. Solid State Chem. 151, 117 (2000).CrossRefGoogle Scholar
  12. 12.
    S. Paschen, V.H. Tran, M. Baenitz, W. Carrillo-Cabrera, Y. Grin, and F. Steglich, Phys. Rev. B 65, 134435 (2002).CrossRefGoogle Scholar
  13. 13.
    S.J. Kim, S. Hu, C. Uher, T. Hogan, B. Huang, J.D. Corbett, and M.G. Kanatzidis, J. Solid State Chem. 153, 321 (2000).CrossRefGoogle Scholar
  14. 14.
    J.H. Kim, N.L. Okamoto, K. Kishida, K. Tanaka, and H. Inui, Acta Mater. 54, 2057 (2006).CrossRefGoogle Scholar
  15. 15.
    J.H. Kim, N.L. Okamoto, K. Kishida, K. Tanaka, and H. Inui, J. Appl. Phys. 102, 094506 (2007).CrossRefGoogle Scholar
  16. 16.
    W. Carrillo-Cabrera, H. Borrmann, S. Paschen, M. Baenitz, F. Steglich, and Y. Grin, J. Solid State Chem. 178, 715 (2005).CrossRefGoogle Scholar
  17. 17.
    F.M. Grosche, H.Q. Yuan, W. Carrillo-Cabrera, S. Paschen, C. Langhammer, F. Kromer, G. Sparn, M. Baenitz, Y. Grin, and F. Steglich, Phys. Rev. Lett. 87, 247003 (2001).CrossRefGoogle Scholar
  18. 18.
    B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001).CrossRefGoogle Scholar
  19. 19.
    A.C. Larson and R.B. Von Dreele, Los Alamos National Laboratory Report LAUR pp. 86–748 (1994).Google Scholar
  20. 20.
    U. Aydemir, C. Candolfi, H. Borrmann, M. Baitinger, A. Ormeci, W. Carrillo-Cabrera, C. Chubilleau, B. Lenoir, A. Dauscher, N. Oeschler, F. Steglich, and Y. Grin, Dalton Trans. 39, 1078 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Grytsiv, N. Melnychenko-Koblyuk, N. Nasir, P. Rogl, A. Saccone, and H. Schmid, Int. J. Mater. Res. 100, 189 (2009).CrossRefGoogle Scholar
  22. 22.
    Y. Li, J. Chi, W. Gou, S. Khandekar, and J.H. Ross Jr., J. Phys. Condens. Matter. 15, 5535 (2003).Google Scholar
  23. 23.
    X. Yan, E. Bauer, P. Rogl, and S. Paschen, Phys. Rev. B 87, 115206 (2013).CrossRefGoogle Scholar
  24. 24.
    U. Aydemir, C. Candolfi, A. Ormeci, M. Baitinger, N. Oeschler, F. Steglich, and Y. Grin, J. Phys. 26, 485801 (2014).Google Scholar
  25. 25.
    X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, and W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010).CrossRefGoogle Scholar
  26. 26.
    S.Y. Rodriguez, L. Saribaev, and J.H. Ross Jr., Phys. Rev. B 82, 064111 (2010).CrossRefGoogle Scholar
  27. 27.
    C. Candolfi, A. Ormeci, U. Aydemir, M. Baitinger, N. Oeschler, Y. Grin, and F. Steglich, Phys. Rev. B 84, 195137 (2011).CrossRefGoogle Scholar
  28. 28.
    I. Zerec, A. Yaresko, P. Thalmeier, and Y. Grin, Phys. Rev. B 66, 045115 (2002).CrossRefGoogle Scholar
  29. 29.
    D. Schopf, H. Euchner, and H.R. Trebin, Phys. Rev. B 89, 214306 (2014).CrossRefGoogle Scholar
  30. 30.
    N. Ashcroft and N. Mermin, Solid State Physics (Philadelphia: Saunders College, 1976).Google Scholar
  31. 31.
    I. Zerec, W. Carrillo-Cabrera, V. Voevodin, J. Sichelschmidt, F. Steglich, Y. Grin, A. Yaresko, and S.I. Kimura, Phys. Rev. B 72, 045122 (2005).CrossRefGoogle Scholar
  32. 32.
    T. Rachi, M. Kitajima, K. Kobayashi, F. Guo, T. Nakano, Y. Ikemoto, K. Kobayashi, and K. Tanigaki, J. Chem. Phys. 123, 074503 (2005).CrossRefGoogle Scholar
  33. 33.
    H.Q. Yuan, F.M. Grosche, W. Carrillo-Cabrera, V. Pacheco, G. Sparn, M. Baenitz, U. Schwarz, Y. Grin, and F. Steglich, Phys. Rev. B 70, 174512 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA
  2. 2.Department of Physics and Astronomy and Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations