Advertisement

Journal of Electronic Materials

, Volume 45, Issue 4, pp 2291–2298 | Cite as

Influence of Processing Conditions and Material Properties on Electrohydrodynamic Direct Patterning of a Polymer Solution

  • Shin Jang
  • Yeongjun Kim
  • Je Hoon OhEmail author
Article

Abstract

An electrohydrodynamic (EHD) patterning method was utilized to obtain high-resolution line patterns in a low electric field regime without an additional mechanical drawing process. Molecular weight and weight percent of a polymer were selected as key parameters to reduce the voltage. EHD patterning was performed using polyethylene oxide (PEO) solutions. The threshold voltages (V th) to initiate jet ejection are almost the same for all solutions. A method verified in this study, reducing the driving voltage (V d) just after the initiation of the jet at the threshold voltage, can make a very thin, continuous jet, while increasing molecular weight and weight percent were enabled to further reduce the input voltage. As the voltage reduction ratio (V d/V th) is decreased, the jet behaves like a solid rather than a liquid due to its fast solidification. The line width of the resultant line pattern could be tuned from 50 nm to 10 μm depending on the substrate moving speed. Contour maps were also developed that show the pattern mode variation as a function of the voltage reduction ratio and key parameters. The results show that well-defined PEO line and grid patterns can be fabricated via the proposed EHD direct patterning under appropriate conditions.

Keywords

Electrohydrodynamic patterning polyethylene oxide (PEO) solution threshold voltage molecular weight electrospinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2011800).

References

  1. 1.
    A. Laforgue and L. Robitaille, Macromolecules 43, 4194 (2010).CrossRefGoogle Scholar
  2. 2.
    Y.Z. Long, M.M. Li, C.Z. Gu, M.X. Wan, J.L. Duvail, Z.W. Liu, and Z.Y. Fan, Prog. Polym. Sci. 36, 1415 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Laforgue and L. Robitaille, Synth. Met. 158, 577 (2008).CrossRefGoogle Scholar
  4. 4.
    S.Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, and T.W. Lee, Nat. Commun. 4, 1773 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C. Mannsfeld, J. Chen, D. Nordlund, M.F. Toney, J. Huang, and Z. Bao, Nat. Commun. 5, 3005 (2014).Google Scholar
  6. 6.
    C.E. Chang, V.H. Tran, J.B. Wang, Y.K. Fuh, and L.W. Lin, Nano Lett. 10, 726 (2010).CrossRefGoogle Scholar
  7. 7.
    F.R. Fan, L. Lin, G. Zhu, W.Z. Wu, R. Zhang, and Z.L. Wang, Nano Lett. 12, 3109 (2012).CrossRefGoogle Scholar
  8. 8.
    S.S. Yao and Y. Zhu, Nanoscale 6, 2345 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Nambiar and J.T.W. Yeow, Biosens. Bioelectron. 26, 1825 (2011).CrossRefGoogle Scholar
  10. 10.
    X.X. Yang, B.W. Zhang, Z.Y. Liu, B. Deng, M. Yu, L.F. Li, H.Q. Jiang, and J.Y. Li, J. Mater. Chem. 21, 11908 (2011).CrossRefGoogle Scholar
  11. 11.
    M.S. Mannoor, Z.W. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, and M.C. McAlpine, Nano Lett. 13, 2634 (2013).CrossRefGoogle Scholar
  12. 12.
    D. Grafahrend, K.H. Heffels, M.V. Beer, P. Gasteier, M. Moller, G. Boehm, P.D. Dalton, and J. Groll, Nat. Mater. 10, 67 (2011).CrossRefGoogle Scholar
  13. 13.
    B.J. Kang, C.K. Lee, and J.H. Oh, Microelectron. Eng. 97, 251 (2012).CrossRefGoogle Scholar
  14. 14.
    D.J. Lee and J.H. Oh, Thin Solid Films 518, 6352 (2010).CrossRefGoogle Scholar
  15. 15.
    C. Hellmann, J. Belardi, R. Dersch, A. Greiner, J.H. Wendorff, and S. Bahnmueller, Polymer 50, 1197 (2009).CrossRefGoogle Scholar
  16. 16.
    C. Chang, K. Limkrailassiri, and L.W. Lin, Appl. Phys. Lett. 93, 123111 (2008).Google Scholar
  17. 17.
    N.B. Bu, Y.A. Huang, X.M. Wang, and Z.P. Yin, Mater. Manuf. Process. 27, 1318 (2012).CrossRefGoogle Scholar
  18. 18.
    H.K. Choi, J.U. Park, O.O. Park, P.M. Ferreira, J.G. Georgiadis, and J.A. Rogers, Appl. Phys. Lett. 92, 123109 (2008).CrossRefGoogle Scholar
  19. 19.
    J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, and J.A. Rogers, Nat. Mater. 6, 782 (2007).CrossRefGoogle Scholar
  20. 20.
    D.H. Reneker, A.L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys. 87, 4531 (2000).CrossRefGoogle Scholar
  21. 21.
    R.T. Collins, J.J. Jones, M.T. Harris, and O.A. Basaran, Nat. Phys. 4, 149 (2008).CrossRefGoogle Scholar
  22. 22.
    M.M. Hohman, M. Shin, G. Rutledge, and M.P. Brenner, Phys. Fluids 13, 2201 (2001).CrossRefGoogle Scholar
  23. 23.
    D.H. Reneker and A.L. Yarin, Polymer 49, 2387 (2008).CrossRefGoogle Scholar
  24. 24.
    B.H. Cao and M.W. Kim, Faraday Discuss. 98, 245 (1994).CrossRefGoogle Scholar
  25. 25.
    T. Han, D.H. Reneker, and A.L. Yarin, Polymer 48, 6064 (2007).CrossRefGoogle Scholar
  26. 26.
    A.L. Yarin, S. Koombhongse, and D.H. Reneker, J. Appl. Phys. 89, 3018 (2001).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringHanyang UniversityAnsanKorea

Personalised recommendations