Journal of Electronic Materials

, Volume 45, Issue 3, pp 1821–1826 | Cite as

Thermal Conductivity Measurement of Liquid-Quenched Higher Manganese Silicides

  • Shunsuke NishinoEmail author
  • Masanobu Miyata
  • Keisuke Ohdaira
  • Mikio Koyano
  • Tsunehiro Takeuchi


Higher manganese silicides (HMSs, MnSi γ , γ ∼ 1.75) show promise for use as low-cost and environmentally friendly thermoelectric materials. To reduce their thermal conductivity, we partially substituted the Mn site with heavy elements using liquid quenching. Fabricated samples possess a curly ribbon-shape with about a 10-μm thickness and 1-mm width, with high surface roughness. In this study, we determined the thermal conductivity of the curly-ribbon-shaped samples using two independent methods: the 3ω method with two heat flow models, and the steady-state method using a physical property measurement system (PPMS; Quantum Design). We succeeded in estimating the thermal conductivity at the temperature range of 100–200 K using the PPMS. The estimated thermal conductivity of non-doped HMSs shows a constant value without temperature dependence of 2.2 ± 0.8 W K−1m−1 at 100–200 K. The difference of thermal conductivities of W-doped and non-doped HMSs was not recognized within the measurement error.


Higher manganese silicide liquid quenching thermal conductivity 3ω method steady-state method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Miyazaki, Y. Saito, K. Hayashi, K. Yubuta, and T. Kajitani, J. Appl. Phys. 50, 035804 (2011).CrossRefGoogle Scholar
  2. 2.
    T. Itoh and M. Yamada, J. Electron. Mater. 38, 925 (2009).CrossRefGoogle Scholar
  3. 3.
    Y. Sadia, M. Elegrably, O. Ben-Nun, Y. Marciano, and Y. Gelbstein, J. Nanomater. 2013, 5 (2013).Google Scholar
  4. 4.
    Y. Kikuchi, T. Nakajo, K. Hayashi, and Y. Miyazaki, J. Alloys Compd. 616, 263 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Yamamoto, S. Ghodke, H. Miyazaki, M. Inukai, Y. Nishino, M. Matsunami, and T. Takeuchi, Jpn. J. Appl. Phys. (in press).Google Scholar
  6. 6.
    W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).CrossRefGoogle Scholar
  7. 7.
    W. Luo, H. Li, F. Fu, W. Hao, and X. Tang, J. Electron. Mater. 40, 1233 (2011).CrossRefGoogle Scholar
  8. 8.
    G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher, J. Mater. Chem. A 1, 12657 (2013).CrossRefGoogle Scholar
  9. 9.
    G. Tan, Y. Zheng, and X. Tang, Appl. Phys. Lett. 103, 183904 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Nishino, M. Koyano, K. Suekuni, and K. Ohdaira, J. Electron. Mater. 43, 2151 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Nishino, M. Koyano, and K. Ohdaira, J. Electron. Mater. 44, 2034 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki, and H. Tsukamoto, J. Appl. Phys. 101, 074301 (2007).CrossRefGoogle Scholar
  13. 13.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).CrossRefGoogle Scholar
  14. 14.
    A. Holtzman, E. Shapira, and Y. Selzer, Nanotechnology 23, 495711 (2012).CrossRefGoogle Scholar
  15. 15.
    T.Y. Choi, D. Poulikakos, J. Tharian, and U. Sennhauser, Appl. Phys. Lett. 87, 013108 (2005).CrossRefGoogle Scholar
  16. 16.
    D.W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, and J.S. Lee, Int. J. Heat Fluid Fl. 29, 1456 (2008).CrossRefGoogle Scholar
  17. 17.
    X.J. Hu, A.A. Padilla, J. Xu, T.S. Fisher, and K.E. Goodson, J. Heat Transf. 128, 1109 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Okada and H. Matsumura, Jpn. J. Appl. Phys. 36, 7035 (1997).CrossRefGoogle Scholar
  19. 19.
    Flow Science, Accessed 12 Aug 2015.

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Shunsuke Nishino
    • 1
    Email author
  • Masanobu Miyata
    • 1
  • Keisuke Ohdaira
    • 2
  • Mikio Koyano
    • 1
    • 2
  • Tsunehiro Takeuchi
    • 3
    • 4
  1. 1.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  2. 2.Green Devices Research CenterJapan Advanced Institute of Science and TechnologyNomiJapan
  3. 3.Toyota Technological InstituteNagoyaJapan
  4. 4.PRESTO, Japan Science and Technology AgencyTokyoJapan

Personalised recommendations