Journal of Electronic Materials

, Volume 45, Issue 2, pp 910–916 | Cite as

Titanium Oxide Adhesion Layer for High Temperature Annealed Si/Si3N4/TiOx/Pt/LiCoO2 Battery Structures

  • E. M. F. Vieira
  • J. F. Ribeiro
  • R. Sousa
  • M. M. Silva
  • L. Dupont
  • L. M. Gonçalves
Article

Abstract

This work describes the influence of a high annealing temperature of about 700°C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such micro-batteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. As-deposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700°C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).

Keywords

Li-microbatteries platinum titanium oxide adhesion layer high temperature ToF-SIMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.K. Khanna, J. Phys. D Appl. Phys. 44, 034004 (2011).CrossRefGoogle Scholar
  2. 2.
    Y.R. Kosuri, T.R. Penki, M. Nookala, and P. Morgen, Adv. Mater. Lett. 4, 615 (2013).Google Scholar
  3. 3.
    H. Xia, S.B. Tang, and L. Lu, J. Korean Phys. Soc. 51, 1055 (2007).CrossRefGoogle Scholar
  4. 4.
    L. Maugeri, A. Iadecola, B. Joseph, L. Simonelli, L. Olivi, M. Okubo, I. Honma, H. Wadati, T. Mizokawa, and N.L. Saini, J. Phys. Condens. Matter 24, 335305 (2012).Google Scholar
  5. 5.
    Y. Takahashi, N. Kijima, K. Tokiwa, T. Watanabe, and J. Akimoto, J. Phys.: Condens. Matter 19, 436202 (2007).Google Scholar
  6. 6.
    J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, and S.A. Hackney, J. Electrochem. Soc. 147, 59 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Sathiya, A.S. Prakash, K. Ramesha, and A.K. Shukla, Materials (Basel). 2, 857 (2009).CrossRefGoogle Scholar
  8. 8.
    R. Weiland, D.F. Lupton, B. Fischer, J. Merker, C. Scheckenbach, and J. Witte, Platin. Met. Rev. 50, 158 (2006).CrossRefGoogle Scholar
  9. 9.
    S. Hsieh, D. Beck, T. Matsumoto, and B.E. Koel, Thin Solid Films 466, 123 (2004).CrossRefGoogle Scholar
  10. 10.
    T.C. Tisone, J. Vac. Sci. Technol. 9, 271 (1972).CrossRefGoogle Scholar
  11. 11.
    H.-J. Nam, D.-K. Choi, and W.-J. Lee, Thin Solid Films 371, 264 (2000).CrossRefGoogle Scholar
  12. 12.
    I.P. Koutsaroff, M. Zelner, P. Woo, L. Mcneil, M. Buchbinder, and A. Cervin-Lawry, Integr. Ferroelectr. 45, 97 (2002).CrossRefGoogle Scholar
  13. 13.
    X.S. Wang, Y.J. Wang, J. Yin, and Z.G. Liu, Scr. Mater. 46, 783 (2002).CrossRefGoogle Scholar
  14. 14.
    S. Mhin, K. Nittala, J. Lee, D.S. Robinson, J.F. Ihlefeld, G.L. Brennecka, L.M. Sanchez, R.G. Polcawich, and J.L. Jones, J. Am. Ceram. Soc. 97, 2973 (2014).CrossRefGoogle Scholar
  15. 15.
    L.H. Chong, K. Mallik, C.H. De Groot, and R. Kersting, J. Phys.: Condens. Matter 18, 645 (2006).Google Scholar
  16. 16.
    L. Tan, L. Pan, C. Cao, B. Wang, and L. Li, J. Power Sources 253, 193 (2014).CrossRefGoogle Scholar
  17. 17.
    H.-Y. Wu, M.-H. Hon, C.-Y. Kuan, and I.-C. Leu, J. Electron. Mater. 43, 1048 (2014).CrossRefGoogle Scholar
  18. 18.
    R. Sousa, J.F. Ribeiro, J.A. Sousa, R.T. Montenegro, L.M. Gonçalves, and J.H. Correia, Proceedings of the 24th micromechanics and microsystems Europe conference (MME) (Hanasaari—Helsinki, Finland, September 1–4, 2013)Google Scholar
  19. 19.
    K.L. Parry, A.G. Shard, R.D. Short, R.G. White, J.D. Whittle, and A. Wright, Surf. Interface Anal. 38, 1497 (2006).Google Scholar
  20. 20.
    J.H. Scofield, J. Electron Spectros. Relat. Phenomena 8, 129 (1976).CrossRefGoogle Scholar
  21. 21.
    S. Tanuma, C.J. Powell, and D.R. Penn, Surf. Interface Anal. 21, 165 (1994).CrossRefGoogle Scholar
  22. 22.
    M. Löffler, A. Vorobiev, L. Zeng, S. Gevorgian, and E. Olsson, J. Appl. Phys. 111, 124514 (2012).CrossRefGoogle Scholar
  23. 23.
    R. Ramesh, A. Inam, W.K. Chan, B. Wilkens, K. Myers, K. Remschnig, D.L. Hart, and J.M. Tarascon, Science 252, 944 (1991).CrossRefGoogle Scholar
  24. 24.
    S.D. Bernstein, T.Y. Wong, Y. Kisler, and R.W. Tustison, J. Mater. Res. 8, 12 (1993).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • E. M. F. Vieira
    • 1
  • J. F. Ribeiro
    • 1
    • 2
  • R. Sousa
    • 3
  • M. M. Silva
    • 4
  • L. Dupont
    • 5
  • L. M. Gonçalves
    • 1
  1. 1.University of Minho, CMEMS UMINHOGuimarãesPortugal
  2. 2.Algoritmi CentreUniversity of MinhoGuimarãesPortugal
  3. 3.DEIUniversity of MinhoGuimarãesPortugal
  4. 4.Chemistry CenterUniversity of MinhoBragaPortugal
  5. 5.Université de Picardie Jules Verne, LRCS, UMR CNRS 7314AmiensFrance

Personalised recommendations