Journal of Electronic Materials

, Volume 45, Issue 1, pp 839–845 | Cite as

Nitrogen-Doped Graphene Synthesized from a Single Liquid Precursor for a Field Effect Transistor

  • Lam Van Nang
  • Nguyen Van Duy
  • Nguyen Duc Hoa
  • Nguyen Van Hieu


Opening the band gap of graphene is among the most important issues in modulating its electrical properties for electronic device applications. In this study, we report on the synthesis of nitrogen-doped graphene for field effect transistors. The graphene doped with nitrogen was synthesized by thermal chemical vapor deposition using a single liquid precursor of dimethylformamide, which contains both carbon and nitrogen sources. Material characterization by Raman spectroscopy, high-resolution transmission electron microscopy, and x-ray photoelectron spectroscopy confirmed the successful synthesis of high-quality nitrogen-doped graphene with a thickness of two or three atomic layers. By simply using dimethylformamide as a liquid precursor, we could dope N into graphene with a doping level of 0.64 at.%. The synthesized graphene was used to fabricate a field effect transistor, the characteristics of which were systematically studied at different temperatures (15–105°C) in air and in a vacuum. Results showed that the synthesized graphene exhibits p-type behavior in air but n-type behavior in a vacuum with a band gap of about 0.03 eV. The field effect mobility calculated at room temperature was 359 cm2 V−1 s−1. The fabricated field effect transistor has potential applications in electronic devices.


N-doped graphene liquid precursor CVD field effect transistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under code 103.02-2013.59.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).CrossRefGoogle Scholar
  3. 3.
    G. Xu, C.M. Torres, Y. Zhang, F. Liu, E.B. Song, M. Wang, Y. Zhou, C. Zeng, and K.L. Wang, Nano Lett. 10, 3312 (2010).CrossRefGoogle Scholar
  4. 4.
    L.L. Zhang, X. Zhao, H. Ji, M.D. Stoller, L. Lai, S. Murali, S. Mcdonnell, B. Cleveger, R.M. Wallace, and R.S. Ruoff, Energy Environ. Sci. 5, 9618 (2012).CrossRefGoogle Scholar
  5. 5.
    X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, and A.F. Hebard, Nano Lett. 6, 2745 (2012).CrossRefGoogle Scholar
  6. 6.
    V.V. Quang, N.V. Dung, N.S. Trong, N.D. Hoa, N.V. Duy, and N.V. Hieu, Appl. Phys. Lett. 105, 013107 (2014).CrossRefGoogle Scholar
  7. 7.
    H.-Y. Kim, K. Lee, N. McEvoy, C. Yim, and G.S. Duesberg, Nano Lett. 13, 2182 (2013).CrossRefGoogle Scholar
  8. 8.
    X. Fan, Z. Shen, Q.A. Liu, and J.-L. Kuo, Nanoscale 4, 2157 (2012).CrossRefGoogle Scholar
  9. 9.
    J. Cai, C.A. Pignedoli, L. Talirz, P. Ruffieux, H. Sode, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Mullen, and R. Fasel, Nat. Nanotechnol. 9, 896 (2014).CrossRefGoogle Scholar
  10. 10.
    Y. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, and P. Kim, Nano Lett. 9, 3430 (2009).CrossRefGoogle Scholar
  11. 11.
    X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, and P. Chen, Chem. Soc. Rev. 43, 7067 (2014).CrossRefGoogle Scholar
  12. 12.
    Y.F.- Lu, S.-T. Lo, J.-C. Lin, W. Zhang, J.-Y. Lu, F.-H. Liu, C.-M. Tseng, Y.-H. Lee, C.-T. Liang, and L.-J. Li, ACS Nano 7, 6522 (2013).CrossRefGoogle Scholar
  13. 13.
    T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, and J. Shen, New J. Chem. 36, 1385 (2012).CrossRefGoogle Scholar
  14. 14.
    X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 768 (2009).CrossRefGoogle Scholar
  15. 15.
    H. Gao, L. Song, W. Guo, L. Huang, D. Yang, F. Wang, Y. Zuo, X. Fan, Z. Liu, W. Gao, R. Vajtai, K. Hackenberg, and P.M. Ajayan, Carbon 50, 4476 (2012).CrossRefGoogle Scholar
  16. 16.
    R. Lv, Q. Li, A.R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elías, R. Cruz-Silva, H.R. Gutiérrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier, M. Pan, and M. Terrones, Sci. Rep. 2, 1 (2012).CrossRefGoogle Scholar
  17. 17.
    G. Kalita, K. Wakita, M. Takahashi, and M. Umeno, J. Mater. Chem. 21, 15209 (2011).CrossRefGoogle Scholar
  18. 18.
    J.F. Bao, N. Kishi, and T. Soga, Mater. Lett. 117, 199 (2014).CrossRefGoogle Scholar
  19. 19.
    V.V. Quang, N.S. Trong, N.N. Trung, N.D. Hoa, N.V. Duy, and N.V. Hieu, Anal. Lett. 47, 280 (2014).CrossRefGoogle Scholar
  20. 20.
    L.V. Nang, N.D. Hoa, C.V. Phuoc, C.T. Quy, P.V. Tong, V.V. Quang, N.V. Duy, and N.V. Hieu, Sci. Adv. Mater. 7, 1013 (2015).CrossRefGoogle Scholar
  21. 21.
    N.D. Hoa, N.V. Quy, Y. Cho, and D. Kim, Sens. Actuators B 135, 656 (2009).CrossRefGoogle Scholar
  22. 22.
    X. Dong, P. Wang, W. Fang, C.Y. Su, Y.H. Chen, L.J. Li, W. Huang, and P. Chen, Carbon 49, 3672 (2011).CrossRefGoogle Scholar
  23. 23.
    B. Chen, H. Huang, X. Ma, L. Huang, Z. Zhang, and L. Peng, Nanoscale 6, 15255 (2014).CrossRefGoogle Scholar
  24. 24.
    Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang, J. Chen, J. Tan, D. Geng, B. Luo, W. Hu, G. Yu, and Y. Liu, J. Am. Chem. Soc. 134, 11060 (2012).CrossRefGoogle Scholar
  25. 25.
    D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).CrossRefGoogle Scholar
  26. 26.
    C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu, Adv. Mater. 23, 1020 (2011).CrossRefGoogle Scholar
  27. 27.
    P. Rani and V.K. Jindal, in AIP Conference Proceedings, 262–263 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Physics DepartmentHoa Lu UniversityNinh BinhVietnam
  2. 2.International Training Institute for Materials Science (ITIMS)Hanoi University of Science and Technology (HUST)HanoiVietnam

Personalised recommendations