Journal of Electronic Materials

, Volume 45, Issue 4, pp 2013–2018 | Cite as

Band Offset Characterization of the Atomic Layer Deposited Aluminum Oxide on m-Plane Indium Nitride

  • Ye Jia
  • Joshua S. Wallace
  • Yueling Qin
  • Joseph A. GardellaJr.
  • Amir M. Dabiran
  • Uttam Singisetti
Article

Abstract

In this letter, we report the band offset characterization of the atomic layer deposited aluminum oxide on non-polar m-plane indium nitride grown by plasma-assisted molecular beam epitaxy by using x-ray photoelectron spectroscopy. The valence band offset between aluminum oxide and m-plane indium nitride was determined to be 2.83 eV. The Fermi level of indium nitride was 0.63 eV above valence band maximum, indicated a reduced band bending in comparison to polar indium nitride. The band gap of aluminum oxide was found to be to 6.7 eV, which gave a conduction band offset of 3.17 eV.

Keywords

m-Plane indium nitride band offset x-ray photoelectron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 21 (2002).Google Scholar
  2. 2.
    T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 7 (2002).CrossRefGoogle Scholar
  3. 3.
    V.YU. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, 3 (2002).CrossRefGoogle Scholar
  4. 4.
    P. Carrier and S.-H. Wei, J. Appl. Phys. 97, 3 (2005).CrossRefGoogle Scholar
  5. 5.
    W.A. Hadi, P.K. Guram, M.S. Shur, and S.K. O’Leary, J. Appl. Phys. 113, 11 (2013).CrossRefGoogle Scholar
  6. 6.
    K.T. Tsen, C. Poweleit, D.K. Ferry, H. Lu, and W.J. Schaff, Appl. Phys. Lett. 86, 22 (2005).CrossRefGoogle Scholar
  7. 7.
    V. Lebedev, V. Cimalla, T. Baumann, O. Ambacher, F.M. Morales, J.G. Lozano, and D. González, J. Appl. Phys. 100, 9 (2006).Google Scholar
  8. 8.
    H. Lu, W.J. Schaff, L.F. Eastman, and C.E. Stutz, Appl. Phys. Lett. 82, 11 (2003).Google Scholar
  9. 9.
    I. Mahboob, T. Veal, C. McConville, H. Lu, and W. Schaff, Phys. Rev. Lett. 92, 3 (2004).CrossRefGoogle Scholar
  10. 10.
    T.D. Veal, L.F.J. Piper, W.J. Schaff, and C.F. McConville, J. Cryst. Growth 288, 2 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Choi, F. Wu, O. Bierwagen, and J.S. Speck, J. Vac. Sci. Technol. A 31, 3 (2013).CrossRefGoogle Scholar
  12. 12.
    S. Li, K. Yu, J. Wu, R. Jones, W. Walukiewicz, J. Ager, W. Shan, E. Haller, H. Lu, and W. Schaff, Phys. Rev. B 71, 16 (2005).Google Scholar
  13. 13.
    P.D.C. King, T.D. Veal, P.H. Jefferson, S.A. Hatfield, L.F.J. Piper, C.F. McConville, F. Fuchs, J. Furthmüller, F. Bechstedt, H. Lu, and W.J. Schaff, Phys. Rev. B 77, 4 (2008).Google Scholar
  14. 14.
    P.D.C. King, T.D. Veal, and C.F. McConville, J. Phys. Condens. Matter 21, 17 (2009).Google Scholar
  15. 15.
    Y.-H. Chang, Y.-S. Lu, Y.-L. Hong, C.-T. Kuo, S. Gwo, and J.A. Yeh, J. Appl. Phys. 107, 4 (2010).Google Scholar
  16. 16.
    L.R. Bailey, T.D. Veal, C.E. Kendrick, S.M. Durbin, and C.F. McConville, Appl. Phys. Lett. 95, 19 (2009).Google Scholar
  17. 17.
    C.-T. Kuo, S.-C. Lin, K.-K. Chang, H.-W. Shiu, L.-Y. Chang, C.-H. Chen, S.-J. Tang, and S. Gwo, Appl. Phys. Lett. 98, 5 (2011).CrossRefGoogle Scholar
  18. 18.
    T.D. Veal, P.D.C. King, P.H. Jefferson, L.F.J. Piper, C.F. McConville, H. Lu, W.J. Schaff, P.A. Anderson, S.M. Durbin, D. Muto, H. Naoi, and Y. Nanishi, Phys. Rev. B 76, 7 (2007).CrossRefGoogle Scholar
  19. 19.
    C.G. Van de Walle and D. Segev, J. Appl. Phys. 101, 8 (2007).Google Scholar
  20. 20.
    A. Belabbes, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 84, 20 (2011).Google Scholar
  21. 21.
    C.-L. Wu, H.-M. Lee, C.-T. Kuo, C.-H. Chen, and S. Gwo, Phys. Rev. Lett. 101, 10 (2008).Google Scholar
  22. 22.
    S. Zhao, S. Fathololoumi, K.H. Bevan, D.P. Liu, M.G. Kibria, Q. Li, G.T. Wang, H. Guo, and Z. Mi, Nano Lett. 12, 6 (2012).Google Scholar
  23. 23.
    S. Zhao, B.H. Le, D.P. Liu, X.D. Liu, M.G. Kibria, T. Szkopek, H. Guo, and Z. Mi, Nano Lett. 13, 11 (2013).Google Scholar
  24. 24.
    B.H. Le, S. Zhao, N.H. Tran, T. Szkopek, and Z. Mi, Appl. Phys. Express 8, 6 (2015).CrossRefGoogle Scholar
  25. 25.
    T. Paskova, Nitrides with Nonpolar Surfaces: Growth, Properties, and Devices (Weinheim: Wiley, 2008), p. 23.CrossRefGoogle Scholar
  26. 26.
    M.D. Groner, J.W. Elam, F.H. Fabreguette, and S.M. George, Thin Solid Films 413, 1 (2002).CrossRefGoogle Scholar
  27. 27.
    T.D. Veal, C.F. McConville, and W.J. Schaff, Indium nitride and related alloys (Boca Raton: CRC Press, 2010), p. 68.Google Scholar
  28. 28.
    C.-L. Hsiao, J.-T. Chen, H.-C. Hsu, Y.-C. Liao, P.-H. Tseng, Y.-T. Chen, Z.C. Feng, L.-W. Tu, M.M.C. Chou, L.-C. Chen, and K.-H. Chen, J. Appl. Phys. 107, 7 (2010).CrossRefGoogle Scholar
  29. 29.
    C. Kim, I.K. Robinson, J. Myoung, K. Shim, M.-C. Yoo, and K. Kim, Appl. Phys. Lett. 69, 16 (1996).CrossRefGoogle Scholar
  30. 30.
    V. Darakchieva, M.Y. Xie, N. Franco, F. Giuliani, B. Nunes, E. Alves, C.L. Hsiao, L.C. Chen, T. Yamaguchi, Y. Takagi, K. Kawashima, and Y. Nanishi, J. Appl. Phys. 108, 7 (2010).CrossRefGoogle Scholar
  31. 31.
    T.D. Veal, C.F. McConville, and W.J. Schaff, Indium Nitride and Related Alloys (Boca Raton: CRC Press, 2011), p. 26.Google Scholar
  32. 32.
    C.J. Lu, L.A. Bendersky, H. Lu, and W.J. Schaff, Appl. Phys. Lett. 83, 14 (2003).Google Scholar
  33. 33.
    C.-F. Shih, N.-C. Chen, P.-H. Chang, and K.-S. Liu, Jpn. J. Appl. Phys. 44, 11 (2005).Google Scholar
  34. 34.
    T.-H. Hung, K. Sasaki, A. Kuramata, D.N. Nath, P. Sung Park, C. Polchinski, and S. Rajan, Appl. Phys. Lett. 104, 16 (2014).CrossRefGoogle Scholar
  35. 35.
    E. Kraut, R. Grant, J. Waldrop, and S. Kowalczyk, Phys. Rev. Lett. 44, 24 (1980).CrossRefGoogle Scholar
  36. 36.
    A. Eisenhardt, G. Eichapfel, M. Himmerlich, A. Knübel, T. Passow, C. Wang, F. Benkhelifa, R. Aidam, and S. Krischok, Phys. Status Solidi C 9, 3–4 (2012).CrossRefGoogle Scholar
  37. 37.
    P.D.C. King, T.D. Veal, C.E. Kendrick, L.R. Bailey, S.M. Durbin, and C.F. McConville, Phys. Rev. B 78, 3 (2008).CrossRefGoogle Scholar
  38. 38.
    P.D.C. King, T.D. Veal, P.H. Jefferson, C.F. McConville, T. Wang, P.J. Parbrook, H. Lu, and W.J. Schaff, Appl. Phys. Lett. 90, 13 (2007).Google Scholar
  39. 39.
    W.M. Linhart, T.D. Veal, P.D.C. King, G. Koblmüller, C.S. Gallinat, J.S. Speck, and C.F. McConville, Appl. Phys. Lett. 97, 11 (2010).CrossRefGoogle Scholar
  40. 40.
    S.A. Chambers, T. Droubay, T.C. Kaspar, and M. Gutowski, J. Vac. Sci. Technol. B 22, 4 (2004).CrossRefGoogle Scholar
  41. 41.
    T. Nagata, G. Koblmüller, O. Bierwagen, C.S. Gallinat, and J.S. Speck, Appl. Phys. Lett. 95, 13 (2009).CrossRefGoogle Scholar
  42. 42.
    T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki, and Y. Nanishi, Phys. Status Solidi C 7, 2031–2034 (2003).CrossRefGoogle Scholar
  43. 43.
    A. Eisenhardt, S. Krischok, and M. Himmerlich, Appl. Phys. Lett. 102, 23 (2013).CrossRefGoogle Scholar
  44. 44.
    I. Geppert, M. Eizenberg, A. Ali, and S. Datta, Appl. Phys. Lett. 97, 16 (2010).CrossRefGoogle Scholar
  45. 45.
    S. Miyazaki, J. Vac. Sci. Technol. B 19, 6 (2001).CrossRefGoogle Scholar
  46. 46.
    M.L. Huang, Y.C. Chang, C.H. Chang, T.D. Lin, J. Kwo, T.B. Wu, and M. Hong, Appl. Phys. Lett. 89, 1 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Ye Jia
    • 1
  • Joshua S. Wallace
    • 2
  • Yueling Qin
    • 3
  • Joseph A. GardellaJr.
    • 2
  • Amir M. Dabiran
    • 4
  • Uttam Singisetti
    • 1
  1. 1.Electrical Engineering DepartmentUniversity at BuffaloBuffaloUSA
  2. 2.Chemistry DepartmentUniversity at BuffaloBuffaloUSA
  3. 3.Integrated Nanostructured Systems InitiativeUniversity at BuffaloBuffaloUSA
  4. 4.SVT AssociatesEden PrairieUSA

Personalised recommendations