Journal of Electronic Materials

, Volume 45, Issue 3, pp 1648–1653 | Cite as

On Improvement of Thermoelectric Properties of Bulk Bi-Sb-Te Nanostructures

  • L.P. BulatEmail author
  • V.B. Osvenskii
  • Yu.N. Parkhomenko
  • D.A. Pshenay-Severin
  • A.I. Sorokin


Fabrication of bulk nanostructures based on bismuth and antimony chalcogenides, including ball milling and subsequent hot pressing or spark plasma sintering, are discussed. Sets of samples of different compositions were obtained using different technological conditions (pressure, sintering temperature). Structure and mechanical properties of consolidated samples were investigated. Thermoelectric parameters were measured using direct methods and Harman technique; measurement errors in the thermoelectric properties were determined. The thermal conductivity of bulk nanostructures based on Bi-Sb-Te was calculated taking into account real phonon spectrum and anisotropy; conditions that promoted the minimizing of thermal conductivity were determined.


Thermoelectrics nanostructures bismuth and antimony chalcogenides spark plasma sintering thermal conductivity real phonon spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Dmitriev and I.P. Zvyagin, Uspekhi Fizicheskikh Nauk. 180, 821 (2010).CrossRefGoogle Scholar
  2. 2.
    Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  3. 3.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  4. 4.
    L.P. Bulat, V.B. Osvensky, G.I. Pivovarov, A.A. Snarskii, E.V. Tatyanin, and A.A.O. Tay, in Proceedings of 6th European Conference on Thermoelectrics, Paris, France, (2008) p. I2-1Google Scholar
  5. 5.
    L.P. Bulat, V.T. Bublik, I.A. Drabkin, V.V. Karataev, V.B. Osvenskii, Yu.N. Parkhomenko, G.I. Pivovarov, D.A. Pshenai-Severin, and N.Yu. Tabachkova, J. Electron. Mater. 39, 1650 (2010).CrossRefGoogle Scholar
  6. 6.
    W. Xie, X. Tang, Q. Zhang, and T.M. Tritt, J. Appl. Phys. 105, 113713 (2009).CrossRefGoogle Scholar
  7. 7.
    W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R.D. Copley, C.M. Brown, Q. Zhang, and T.M. Tritt, Nano Lett. 10, 3283 (2010).CrossRefGoogle Scholar
  8. 8.
    L.P. Bulat, I.A. Drabkin, V.V. Karatayev, V.B. Osvenskii, Yu.N. Parkhomenko, M.G. Lavrentev, A.I. Sorokin, D.A. Pshenai-Severin, V.D. Blank, G.I. Pivovarov, V.T. Bublik, and N.Yu. Tabachkova, J. Electron. Mater. 42, 2110 (2013).CrossRefGoogle Scholar
  9. 9.
    L.P. Bulat, I.A. Drabkin, V.V. Karatayev, V.B. Osvenskii, Y.N. Parkhomenko, D.A. Pshenay-Severin, and A.I. Sorokin, J. Electron. Mater. 43, 2121 (2014).CrossRefGoogle Scholar
  10. 10.
    L. Bulat, V. Osvenskii, Yu Parkhomenko, and D. Pshenai-Severin, Phys. Solid State 54, 2165 (2012).CrossRefGoogle Scholar
  11. 11.
    L.P. Bulat, V.B. Osvenskii, and D.A. Pshenay-Severin, J. Electron. Mater. 43, 3780 (2014).CrossRefGoogle Scholar
  12. 12.
    L.P. Bulat, I.A. Drabkin, V.B. Osvenskii, Y.N. Parkhomenko, D.A. Pshenay-Severin, A.I. Sorokin, A.A. Igonina, V.T. Bublik, and M.G. Lavrentev, J. Electron. Mater. 44, 1846 (2014).CrossRefGoogle Scholar
  13. 13.
    M.G. Lavrentev, V.B. Osvenskii, G.I. Pivovarov et al., in Thermoelectrics and their Applications, St. Petersburg, Ioffe PTI, 2015, p. 307 (In Russian)Google Scholar
  14. 14.
    L.P. Bulat, I.A. Drabkin, V.V. Karataev, V.B. Osvenskiĭ, and D.A. Pshenaĭ-Severin, Phys. Solid State. 52, 1836 (2010).CrossRefGoogle Scholar
  15. 15.
    L.P. Bulat, I.A. Drabkin, V.V. Karataev, V.B. Osvenskii, Yu.N. Parkhomenko, D.A. Pshenai-Severin, G.I. Pivovarov, and N.Yu. Tabachkova, Phys. Solid State. 53, 29 (2011).CrossRefGoogle Scholar
  16. 16.
    L.P. Bulat, V.B. Osvenskii, Yu.N. Parkhomenko, and D.A. Pshenay-Severin, J. Solid State Chem. 193, 122 (2012).CrossRefGoogle Scholar
  17. 17.
    N.A. Katcho, N. Mingo, and D.A. Broido, Phys. Rev. B 85, 115208 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Stordeur, M. Stolzer, H. Sobotta, and V. Riede, Phys. Stat. Sol. (b) 150, 165 (1988).CrossRefGoogle Scholar
  19. 19.
    J.R. Drabble and R. Wolfe, Proc. Phys. Soc. Sect B 69, 1101 (1956).CrossRefGoogle Scholar
  20. 20.
    B.M. Goltsman, B.A. Kudinov, and I.A. Smirnov, Semiconductor Thermoelectric Materials Based on Bi 2 Te 3 (Moskow: Nauka, 1972), p. 320.Google Scholar
  21. 21.
    H.J. Goldsmid, H.B. Lyon, and E.H. Volckmann, in Proceedings 14th International Conference on Thermoelectrics, St. Petersburg, Russia, 1995, p. 16.Google Scholar
  22. 22.
    K. Stecker, H. Süssmann, W. Eichler, W. Heiliger, M. Stordeur, and Z. Wiss, Martin-Luther-Univ. Halle/Wittenberg, Math-Naturwiss. R 27, 5, 5 (1978).Google Scholar
  23. 23.
    S.V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Zebarjadi, K. Esfarjani, A. Shakouri, J.H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard, Appl. Phys. Lett. 94, 202105 (2009).CrossRefGoogle Scholar
  25. 25.
    W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006).CrossRefGoogle Scholar
  26. 26.
    B.-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).CrossRefGoogle Scholar
  27. 27.
    G.C. Sosso, S. Caravati, and M. Bernasconi, J. Phys. 21, 095410 (2009).Google Scholar
  28. 28.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, and I. Dabo, J. Phys. 21, 395502 (2009).Google Scholar
  29. 29.
    S. Baroni, S. Gironcoli, A.D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515–562 (2001).CrossRefGoogle Scholar
  30. 30.
    P. Crosse, H. Burkhard, V. Wagner, and B. Dorner, ILL-experimental report 04-01-044, Grenoble, 1976Google Scholar
  31. 31.
    ThL Anderson and H.B. Krause, Acta Crystallogr. B 30, 1307 (1974).CrossRefGoogle Scholar
  32. 32.
    S. Grimme, J. Comp. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  33. 33.
    V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, J. Comp. Chem. 30, 934 (2009).CrossRefGoogle Scholar
  34. 34.
    A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
  35. 35.
    B.-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).CrossRefGoogle Scholar
  36. 36.
    B. Qiu and X. Ruan, Phys. Rev. B 80, 165203 (2009).CrossRefGoogle Scholar
  37. 37.
    Y. Wang, B. Qiu, A. McGaughey, R. Xiulin, and X. Xianfan, J. Heat Transfer 135, 091102-1 (2013).Google Scholar
  38. 38.
    O. Hellman and D. Broido, Phys. Rev. B 90, 134309 (2014).CrossRefGoogle Scholar
  39. 39.
    A. Togo, L. Chaput, and I. Tanaka, Phys. Rev. B 91, 094306 (2015).CrossRefGoogle Scholar
  40. 40.
    H.J. Goldsmid, Proc. Phys. Soc. B 69, 203 (1956).CrossRefGoogle Scholar
  41. 41.
    C.B. Satterthwaite and J.R. Ure, W. Phys. Rev. 108, 1164 (1957).CrossRefGoogle Scholar
  42. 42.
    M.-S. Jeng, R. Yang, D. Song, and G. Chen, J. Heat Transf. 130, 042410 (2008).CrossRefGoogle Scholar
  43. 43.
    A.J.H. McGaughey and A. Jain, Appl. Phys. Lett. 100, 061911 (2012).CrossRefGoogle Scholar
  44. 44.
    Q. Hao, J. Appl. Phys. 111, 014307 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • L.P. Bulat
    • 1
    Email author
  • V.B. Osvenskii
    • 2
  • Yu.N. Parkhomenko
    • 2
  • D.A. Pshenay-Severin
    • 3
    • 4
  • A.I. Sorokin
    • 2
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.GIREDMET Ltd.MoscowRussia
  3. 3.Ioffe Physical Technical InstituteSt. PetersburgRussia
  4. 4.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations