Journal of Electronic Materials

, Volume 45, Issue 3, pp 1584–1588 | Cite as

The Fragility of Thermoelectric Power Factor in Cross-Plane Superlattices in the Presence of Nonidealities: A Quantum Transport Simulation Approach

  • M. ThesbergEmail author
  • M. Pourfath
  • N. Neophytou
  • H. Kosina


Energy filtering has been put forth as a promising method for achieving large thermoelectric power factors in thermoelectric materials through Seebeck coefficient improvement. Materials with embedded potential barriers, such as cross-plane superlattices, provide energy filtering, in addition to low thermal conductivity, and could potentially achieve high figure of merit. Although there exist many theoretical works demonstrating Seebeck coefficient and power factor gains in idealized structures, experimental support has been scant. In most cases, the electrical conductivity is drastically reduced due to the presence of barriers. In this work, using quantum-mechanical simulations based on the nonequilibrium Green’s function method, we show that, although power factor improvements can theoretically be observed in optimized superlattices (as pointed out in previous studies), different types of deviations from the ideal potential profiles of the barriers degrade the performance, some nonidealities being so significant as to negate all power factor gains. Specifically, the effect of tunneling due to thin barriers could be especially detrimental to the Seebeck coefficient and power factor. Our results could partially explain why significant power factor improvements in superlattices and other energy-filtering nanostructures mainly fail to be realized, despite theoretical predictions.


Thermoelectric superlattices quantum transport thermoelectric power factor Seebeck coefficient energy filtering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the Vienna Scientific Computing Cluster for computational resources, and funding from the Austrian Science Fund FWF (Project Code P25368-N30).


  1. 1.
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).CrossRefGoogle Scholar
  2. 2.
    L.D. Zhao, S.H. Lo, J.Q. He, L. Hao, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).CrossRefGoogle Scholar
  3. 3.
    D.M. Rowe and G. Min, AIP Conf. Proc. 316, 339 (1994).CrossRefGoogle Scholar
  4. 4.
    Y. Nishio and T. Hirano, Jpn. J. Appl. Phys. 36, 170 (1997).CrossRefGoogle Scholar
  5. 5.
    G.D. Mahan and L.M. Woods, Phys. Rev. Lett. 80, 4016 (1998).CrossRefGoogle Scholar
  6. 6.
    D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).CrossRefGoogle Scholar
  7. 7.
    J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 205302 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Shakouri, Annu. Rev. Mater. Res. 41, 399 (2011).CrossRefGoogle Scholar
  10. 10.
    R. Kim and M. Lundstrom, J. Appl. Phys. 110, 034511 (2011).CrossRefGoogle Scholar
  11. 11.
    R. Kim and M.S. Lundstrom, J. Appl. Phys. 111, 024508 (2012).CrossRefGoogle Scholar
  12. 12.
    D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).CrossRefGoogle Scholar
  13. 13.
    W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).CrossRefGoogle Scholar
  14. 14.
    H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).CrossRefGoogle Scholar
  15. 15.
    N. Neophytou and H. Kosina, J. Appl. Phys. 114, 044315 (2013).CrossRefGoogle Scholar
  16. 16.
    N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).CrossRefGoogle Scholar
  17. 17.
    J.-H. Bahk, Z. Bian, and A. Shakouri, Phys. Rev. B 89, 075204 (2014).CrossRefGoogle Scholar
  18. 18.
    J.-H. Bahk and A. Shakouri, Appl. Phys. Lett. 105, 052106 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Datta, Quantum Transport: Atom to Transistor (Cambridge, NY: Cambridge University Press, 2005).CrossRefGoogle Scholar
  20. 20.
    R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997).CrossRefGoogle Scholar
  21. 21.
    S.O. Koswatta, S. Hasan, M.S. Lundstrom, and M.P. Anantram, IEEE Trans. Electron Dev. 54, 2339 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • M. Thesberg
    • 1
    Email author
  • M. Pourfath
    • 1
  • N. Neophytou
    • 2
  • H. Kosina
    • 1
  1. 1.Institute for MicroelectronicsTU WienViennaAustria
  2. 2.University of WarwickCoventryUK

Personalised recommendations