Journal of Electronic Materials

, Volume 45, Issue 3, pp 1576–1583 | Cite as

Phase Content and Thermoelectric Properties of Optimized Thermoelectric Structures Based on the Ag-Pb-Sb-Te System

  • Ihor Horichok
  • Rasit Ahiska
  • Dmytro Freik
  • Lyubomyr Nykyruy
  • Stepan Mudry
  • Ostap Matkivskiy
  • Taras Semko
Article

Abstract

Results of x-ray studies and measurements of thermoelectric parameters (Seebeck coefficient S, specific electrical conductivity σ, and thermal conductivity χ) of materials based on lead telluride, such as PbTe, PbTe:Sb, PbTe-Sb2Te3, Pb18Ag1Sb1Te20, Pb18Ag2Te20, and PbTe-Ag2Te, are presented. It was found that PbTe:Sb (with 0.3 at.% Sb) as well as Pb18Ag1Sb1Te20 and Pb18Ag2Te20 systems have the highest thermoelectric figure of merit values. In the case of PbTe:Sb, this is due to a significant increase of the electrical conductivity. In the cases of Pb18Ag1Sb1Te20 and Pb18Ag2Te20, it is due to an increase of the Seebeck coefficient and a significant reduction in the thermal conductivity compared with pure PbTe.

Keywords

Lead telluride doping solid solutions LAST thermoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. (2014). doi:10.1039/C3EE43099E.Google Scholar
  2. 2.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).CrossRefGoogle Scholar
  3. 3.
    A.V. Dmitriev and I.P. Zvyagin, Usp. Fiz. Nauk 180, 821 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Wang, J.-H. Bahk, C. Kang, J. Hwang, K. Kim, J. Kim, P. Burke, J.E. Bowers, A.C. Gossard, A. Shakouri, and W. Kim, PNAS 111, 10949 (2014).CrossRefGoogle Scholar
  5. 5.
    T.M. Tritt, H. Böttner, and L. Chen, MRS Bull. 33, 366 (2008).CrossRefGoogle Scholar
  6. 6.
    J.-C. Zheng, Front. Phys. Chin. 3, 269 (2008).CrossRefGoogle Scholar
  7. 7.
    A.O. Epremyan, V.M. Arutyunyan, and A.I. Vaganyan, Int. Sci. J. Altern. Energy Ecol. 5, 7 (2005).Google Scholar
  8. 8.
    A.V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, Energy Environ. Sci. (2011). doi:10.1039/C0EE00456A.Google Scholar
  10. 10.
    L.D. Borisova, Phys. St. Sol. (a) 53, K19 (1979).CrossRefGoogle Scholar
  11. 11.
    C.M. Jaworski, J. Tobola, E.M. Levin, and K. Schmidt-Rohr, J. Heremans Phys. Rev. B (2009). doi:10.1103/PhysRevB.80.125208.Google Scholar
  12. 12.
    D.M. Freik, C.A. Kryskov, I.V. Horichok, T.S. Lyuba, O.S. Krynytsky, and O.M. Rachkovsky, J. Thermoelectricity 2, 42 (2013).Google Scholar
  13. 13.
    D.M. Freik, S.I. Mudryi, I.V. Gorichok, R.O. Dzumedzey, O.S. Krunutcky, and T.S. Lyuba, Ukr. J. Phys. 59, 706 (2014).CrossRefGoogle Scholar
  14. 14.
    P.-W. Zhu, Y. Imai, Y. Isoda, Y. Shinohara, X.-P. Jia, and G.-T. Zou, Chin. Phys. Lett. 22, 2103 (2005).CrossRefGoogle Scholar
  15. 15.
    K.-F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  16. 16.
    H. Hazama, U. Mizutaniand, and R. Asahi, Phys. Rev. B 73, 115108 (2006).CrossRefGoogle Scholar
  17. 17.
    E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, and M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005).CrossRefGoogle Scholar
  18. 18.
    J. Sootsman, R. Pcionek, H. Kong, C. Uher, and M.G. Kanatzidis, Mater. Res. Soc. Symp. Proc. 886, 0886-F08-05 (2005).CrossRefGoogle Scholar
  19. 19.
    D. Bilc, S.D. Mahanti, E. Quarez, K.F. Hsu, R. Pcionek, and M.G. Kanatzidis, Phys. Rev. Lett. 93, 146403-1 (2004).CrossRefGoogle Scholar
  20. 20.
    F. Yan, T.J. Zhu, S.H. Yang, and X.B. Zhao, Phys. Scrip. 129, 116 (2007).CrossRefGoogle Scholar
  21. 21.
    J.K. Lee, M.W. Oh, S.D. Park, B.S. Kim, B.K. Min, M.H. Kim, and H.W. Lee, Electron. Mater. Lett. 8, 659 (2012).CrossRefGoogle Scholar
  22. 22.
    S. Perlt, Th Hoche, J. Dadda, E. Muller, P.B. Pereira, R. Hermann, M. Sarahan, E. Pippel, and R. Brydson, J. Solid State Chem. 193, 58 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Dadda, E. Muller, B. Klobes, P. Bauer-Pereira, and R. Hermann, J. Electron. Mater. 41, 2065 (2012).CrossRefGoogle Scholar
  24. 24.
    J. Dadda, E. Müller, S. Perlt, T. Höche, P. Bauer-Pereira, and R.P. Hermann, J. Mater. Res. 26, 1800 (2011).CrossRefGoogle Scholar
  25. 25.
    L. Wu, J.-C. Zheng, J. Zhou, Q. Li, J. Yang, and Y. Zhu, J. Appl. Phys. 105, 094317-1 (2009).Google Scholar
  26. 26.
    D. Bilc, S.D. Mahanti, E. Quarez, K.-F. Hsu, R. Pcionek, and M.G. Kanatzidis, Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.146403.Google Scholar
  27. 27.
    K. Hoang, S.D. Mahanti, J. Androulakis, and M.G. Kanatzidis, Mater. Res. Soc. 886, 0886-F05-06.1 (2006).Google Scholar
  28. 28.
    K. Hoang, S.D. Mahanti, and P. Jena, Phys. Rev. B 76, 115432-1 (2007).CrossRefGoogle Scholar
  29. 29.
    S.V. Barabash, V. Ozolins, and C. Wolverton, Phys. Rev. Lett. (2008). doi:10.1103/PhysRevLett.101.155704.Google Scholar
  30. 30.
    F. Ren, E.D. Case, E.J. Timm, and H.J. Schock, J. Alloys Compd. 455, 340 (2008).CrossRefGoogle Scholar
  31. 31.
    F. Ren, E.D. Case, E.J. Timm, E. Lara-Curzio, and R.M. Trejo, Acta Mater. 58, 31 (2010).CrossRefGoogle Scholar
  32. 32.
    Y. Pei, N.A. Heinz, A. LaLonde, and G.J. Snyder, Energy Environ. Sci. 4, 3640 (2011). doi:10.1039/C1EE01928G.CrossRefGoogle Scholar
  33. 33.
    O. Falkenbachr, A. Schmitzz, D. Hartung, T. Dankworf, G. Koch, L. Kienlea, P.J. Klar, E. Muellerr, and S. Schlechtr, Thermoelectric Properties of Nanostructured AgPbmBiTe2+m (The 2014 International Conference on Thermoelectrics, Nashville, Tennessee, USA, July 6–10, 2014) http://abstracts.its.org/abstractdetails/10552. Accessed 6 July 2014.
  34. 34.
    E.M. Levin, B.A. Cook, K. Ahn, M.G. Kanatzidis, and K. Schmidt-Rohr, Phys. Rev. B 80, 115211 (2009). doi:10.1103/PhysRevB.80.115211.CrossRefGoogle Scholar
  35. 35.
    D.M. Freik, R.Y. Mykhajlyonka, and V.M. Klanichka, Phys. Chem. Solid St. (Ukr.) 5, 173 (2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Ihor Horichok
    • 1
  • Rasit Ahiska
    • 2
  • Dmytro Freik
    • 1
  • Lyubomyr Nykyruy
    • 1
  • Stepan Mudry
    • 3
  • Ostap Matkivskiy
    • 1
  • Taras Semko
    • 1
  1. 1.Vasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  2. 2.Gazi UniversityAnkaraTurkey
  3. 3.Ivan Franko National University of LvivLvivUkraine

Personalised recommendations