Journal of Electronic Materials

, Volume 45, Issue 1, pp 435–443

Elastic, Electronic, Optical and Thermal Properties of Na2Po: An Ab Initio Study

Article

Abstract

The structural, elastic, electronic, optical and thermodynamic properties of the sodium polonide Na2Po compound have been studied through the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) and tight-binding linear muffin-tin orbital (TB-LMTO) methods. The exchange–correlation potential was treated within the local density approximation for the TB-LMTO calculations and within the generalized gradient approximation for the FP-LAPW + lo calculations. In addition, Tran and Blaha-modified Becke–Johnson (TB-mBJ) potential and Engel–Vosko generalized gradient approximation were used for the electronic and optical properties. Ground state properties such as the equilibrium lattice constant, bulk modulus and its pressure derivative were calculated and compared with available data. The single-crystal and polycrystalline elastic constants of the considered compound were calculated via the total energy versus strain in the framework of the FP-LAPW + lo approach. The calculated electronic structure reveals that Na2Po is a direct band gap semiconductor. The frequency-dependent dielectric function, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for a wide energy range. The variations of the lattice constant, bulk modulus, heat capacity, volume expansion coefficient and Debye temperature with temperature and pressure were calculated successfully using the FP-LAPW + lo method in combination with the quasi-harmonic Debye model.

Keywords

Electronic structure band gap optoelectronic FP-LAPW + lo TB-LMTO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.D. Eithiraj, G. Jaiganesh, and G. Kalpana, Int. J. Mod. Phys. B 23, 5027 (2009).CrossRefGoogle Scholar
  2. 2.
    H. Khachai, R. Khenata, A. Bouhemadou, A. Haddou, A.H. Reshak, B. Amrani, D. Rached, and B. Soudini, J. Phys. 21, 095404 (2009).Google Scholar
  3. 3.
    E. Zintl, A. Harderand, and B. Dauth, Z. Elektrochem. 40, 588 (1934).Google Scholar
  4. 4.
    D. Biseri, A. di Bona, P. Paradisi, and S. Valeri, J. App. Phys. 87, 543 (2000).CrossRefGoogle Scholar
  5. 5.
    A. Piccioli, R. Pegna, I. Fedorko, M. Giunta, and N. Malakhov, Nucl. Instrum. Methods Phys. Res. A 518, 602 (2004).CrossRefGoogle Scholar
  6. 6.
    C. Joram, Nucl. Phys. B 78, 407 (1999).CrossRefGoogle Scholar
  7. 7.
    X. Zhang, C. Ying, H. Ma, G. Shi, and Z. Li, Phys. Scr. 88, 035602 (2013).CrossRefGoogle Scholar
  8. 8.
    W. Bührer and H. Bill, Helv. Phys. Acta 50, 431 (1977).Google Scholar
  9. 9.
    B. Bertheville, H. Bill, and F. Kubel, J. Phys. Chem. Solids 58, 1569 (1997).CrossRefGoogle Scholar
  10. 10.
    W. Bührer and H. Bill, J. Phys. C 13, 5495 (1980).CrossRefGoogle Scholar
  11. 11.
    J.C. Schon, Z. Cancarevic, and M. Jansen, J. Chem. Phys. 121, 2289 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Lichanot, E. Apra, and R. Dovesi, Phys. Status Solidi (b) 177, 157 (1993).CrossRefGoogle Scholar
  13. 13.
    P. Azavant and A. Lichanot, Acta Cryst. (A) 49, 91 (1993).CrossRefGoogle Scholar
  14. 14.
    P. Azavant, A. Lichanot, M. Rérat, and C. Pisani, Acta Cryst. (B) 50, 279 (1994).CrossRefGoogle Scholar
  15. 15.
    H. Khachai, R. Khenata, A. Bouhemadou, A.H. Reshak, A. Haddou, and B. Soudini, Solid State Commun. 147, 178 (2008).CrossRefGoogle Scholar
  16. 16.
    F. Kalarasse and B. Bennecer, Comput. Mat. Sci. 50, 1806 (2011).CrossRefGoogle Scholar
  17. 17.
    S.M. Alay-e-Abbasand and A. Shaukat, J. Mater. Sci. 46, 10027 (2011).Google Scholar
  18. 18.
    G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordstrom, Phys. Rev. B 64, 195134 (2001).CrossRefGoogle Scholar
  19. 19.
    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
  20. 20.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  21. 21.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A113 (1965).CrossRefGoogle Scholar
  22. 22.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna: Vienna University of Technology, 2001).Google Scholar
  23. 23.
    K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).CrossRefGoogle Scholar
  24. 24.
    K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, and Y. Lei, J. Appl. Phys. 114, 034901 (2013).CrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  26. 26.
    E. Engel and S.H. Vosko, Phys. Rev. B 47, 13164 (1993).CrossRefGoogle Scholar
  27. 27.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).CrossRefGoogle Scholar
  28. 28.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  29. 29.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  30. 30.
    O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).CrossRefGoogle Scholar
  31. 31.
    U. von Barth and L. Hedin, Phys. C 5, 1629 (1972).CrossRefGoogle Scholar
  32. 32.
    O. Jepsen and O.K. Andersen, Solid State Commun. 9, 1763 (1971).CrossRefGoogle Scholar
  33. 33.
    M.A. Blanco, E. Francisco, and V. Luaña, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  34. 34.
    M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. Theochem. 368, 245 (1996).CrossRefGoogle Scholar
  35. 35.
    M. Florez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás, Phys. Rev. B 66, 144112 (2002).CrossRefGoogle Scholar
  36. 36.
    H.V. Moyer, Polonium (Oak Ridge: United States Atomic Energy Commission, 1956).Google Scholar
  37. 37.
    F. Birch, J. Geophys. Res. 83, 1257 (1978).CrossRefGoogle Scholar
  38. 38.
    M.J. Mehl, Phys. Rev. B 47, 2493 (1993).CrossRefGoogle Scholar
  39. 39.
    J. Wang and S. Yip, Phys. Rev. Lett. 71, 4182 (1993).CrossRefGoogle Scholar
  40. 40.
    J. Haines, J.M. Leger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).CrossRefGoogle Scholar
  41. 41.
    S.F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  42. 42.
    H. Ledbetter and A. Migliori, J. Appl. Phys. 100, 063516 (2006).CrossRefGoogle Scholar
  43. 43.
    P. Lloveras, T. Castán, M. Porta, A. Planes, and A. Saxena, Phys. Rev. Lett. 100, 165707 (2008).CrossRefGoogle Scholar
  44. 44.
    J.F. Nye, Properties of crystals (Oxford: Oxford University Press, 1985).Google Scholar
  45. 45.
    C. Ambrosch-Draxl and J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006).CrossRefGoogle Scholar
  46. 46.
    A. Einstein, Ann. Phys. 22, 80 (1907).Google Scholar
  47. 47.
    A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • N. Baki
    • 1
  • R. D. Eithiraj
    • 2
  • H. Khachai
    • 1
  • R. Khenata
    • 3
  • G. Murtaza
    • 4
  • A. Bouhemadou
    • 5
  • T. Seddik
    • 3
  • S. Bin-Omran
    • 6
  1. 1.Laboratoire d’étude des Matériaux et Instrumentations Optiques-Faculté des Sciences ExactesDjillali Liabès UniversitySidi Bel AbbèsAlgeria
  2. 2.Crystal Growth & Crystallography Division, School of Advanced SciencesVIT UniversityVelloreIndia
  3. 3.Laboratoire de Physique Quantique et de Modélisation MathématiqueUniversité de MascaraMascaraAlgeria
  4. 4.Materials Modeling Lab, Department of PhysicsIslamia College UniversityPeshawarPakistan
  5. 5.Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of ScienceUniversity of SetifSetifAlgeria
  6. 6.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations