Journal of Electronic Materials

, Volume 45, Issue 3, pp 1517–1522 | Cite as

The Influence of a Dispersion Cone on the Temperature Distribution in the Heat Exchanger of a Thermoelectric Generator

  • M. MusiaŁEmail author
  • M. Borcuch
  • K. Wojciechowski


This paper presents the results of a numerical simulation of heat distribution in the heat exchanger of a prototype thermoelectric generator constructed and examined in the Thermoelectric Research Laboratory in AGH University, Cracow, Poland. The area of interest was to prepare a numerical model and determine the influence of a dispersion cone on the temperature distribution along the heat exchanger. The role of a dispersion element is to mix the air stream to improve the flow between the internal heat exchanger’s fins in order to enhance heat exchange. The estimation of power output parameters and exchanger efficiency has been performed in order to assess the cone impact for three selected air inlet temperatures. The results show that the presence of the cone increases the efficiency of the thermoelectric generator by at least 25%.


Thermoelectric generator heat exchanger CFD waste heat recovery 

List of symbols



Electrical power (W)


Power ratio (–)


Optimum module electrical resistance (Ω)


Air inlet temperature (K)


Air outlet temperature (K)


Module hot side temperature (K)


Module cold side temperature (K)


Hot side temperature at position i (K)


Output voltage (V)


Seebeck coefficient (V K−1)


T H – T C


Heat exchanger efficiency



Model with the cone at the front of the heat exchanger


Model with the cone at the back of the heat exchanger


Model without cone


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, J. Electron. Mater. (2010). doi: 10.1007/s11664-010-1305-2.Google Scholar
  2. 2.
    K. Sun-Kook, W. Byeong-Cheol, R. Seok-Ho, K. Shi-Ho, Y. Jeong-Ho, and J. Ju-Chan, J. Electron. Mater. (2011). doi: 10.1007/s11664-011-1569-1.Google Scholar
  3. 3.
    M.F. Remeli, L. Tan, A. Date, B. Singh, and A. Akbarzadeh, Energ. Convers. Manage (2015). doi: 10.1016/j.enconman.2014.12.001.Google Scholar
  4. 4.
    K.T. Wojciechowski, M. Schmidt, R. Zybala, J. Merkisz, P. Fuc, and P. Lijewski, J. Electron. Mater. (2009). doi: 10.1007/s11664-009-1010-1.Google Scholar
  5. 5.
    X. Liu, C.G. Yu, Y.P. Wang, and C.Q. Su, J. Electron. Mater. (2014). doi: 10.1007/s11664-014-3015-7.Google Scholar
  6. 6.
    M. Klein Altstedde, F. Rinderknecht, and H. Friedrich, J. Electron. Mater. (2014). doi: 10.1007/s11664-014-2990-z.Google Scholar
  7. 7.
    Y. Shuhai, D. Qing, D. Hai, S. Gequn, and J. Kui, Energ. Convers. Manage. (2015). doi: 10.1016/j.enconman.2015.03.002.Google Scholar
  8. 8.
    X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energ. Convers. Manag. (2015). doi: 10.1016/j.enconman.2014.11.015.Google Scholar
  9. 9.
    I. Byung deok, K. Hyung ik, S. Jung wook, and L. Ki hyung, Int. J. Heat Mass Trans. (2015). doi: 10.1016/j.ijheatmasstransfer.2015.03.052.Google Scholar
  10. 10.
    B. Shengqiang, L. Hongliang, W. Ting, Y. Xianglin, S. Xun, and C. Lidong, Case Stud. Therm. Eng. (2014). doi: 10.1016/j.csite.2014.07.003.Google Scholar
  11. 11.
    Y. Wang, C. Wu, Z. Tang, X. Yang, Y. Deng, and C. Su, J. Electron. Mater. (2014). doi: 10.1007/s11664-014-3527-1.Google Scholar
  12. 12.
    K. Qiu and A.C.S. Hayden, J. Electron. Mater. (2010). doi: 10.1007/s11664-010-1473-0.Google Scholar
  13. 13.
    A.M. Goudarzi, P. Mazandarani, R. Panahi, H. Behsaz, A. Rezania, and L.A. Rosendahl, J. Electron. Mater. (2013). doi: 10.1007/s11664-013-2545-8.Google Scholar
  14. 14.
    N.R. Kristiansen and H.K. Nielsen, J. Electron. Mater. (2010). doi: 10.1007/s11664-010-1189-1.Google Scholar
  15. 15.
    L. Miao, M. Zhang, S. Tanemura, T. Tanaka, Y.P. Kang, and G. Xu, J. Electron. Mater. (2012). doi: 10.1007/s11664-012-2076-8.Google Scholar
  16. 16.
    C. Lertsatitthanakorn, S. Soponronnarit, J. Jamaradloedluk, M. Rungsiyopas, and R. Sarachitti, J. Electron. Mater. (2013). doi: 10.1007/s11664-013-2945-9.Google Scholar
  17. 17.
    K.T. Wojciechowski, J. Merkisz, P. Fuc, J. Tomankiewicz, R. Zybala, J. Leszczynski, P. Lijewski, and P. Nieroda, Combust. Engines 154, 60 (2013).Google Scholar
  18. 18.
    K.T. Wojciechowski, T. Zybala, J. Tomankiewicz, P. Fuc, P. Lijewski, J. Wojciechowski, and J. Merkisz, Thermoelectr. Goes Automot. II, 177 (2012).Google Scholar
  19. 19.
    T. Hua, S. Xiuxiu, J. Qi, L. Xingyu, S. Gequn, and W. Xu, Energy (2015). doi: 10.1016/ Scholar
  20. 20.
    H. Wei, Z. Gan, Z. Xingxing, J. Jie, L. Guiqiang, and Z. Xudong, Appl. Energ. (2015). doi: 10.1016/j.apenergy.2014.12.075.Google Scholar
  21. 21.
    ANSYS CFX Solver Theory and Modeling Guide. ANSYS Inc.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Thermal Engineering and Fluid Flow, Faculty of Energy and FuelsAGH University of Science and TechnologyCracowPoland
  2. 2.Thermoelectric Research Laboratory, Faculty of Materials Science and CeramicsAGH University of Science and TechnologyCracowPoland

Personalised recommendations