Journal of Electronic Materials

, Volume 45, Issue 1, pp 339–348 | Cite as

Electronic Structure of Crystalline Buckyballs: fcc-C60

  • Saeid Jalali-Asadabadi
  • E. Ghasemikhah
  • T. Ouahrani
  • B. Nourozi
  • M. Bayat-Bayatani
  • S. Javanbakht
  • H. A. Rahnamaye Aliabad
  • Iftikhar Ahmad
  • J. Nematollahi
  • M. Yazdani-Kachoei


The electronic properties of pristine fcc-C60 are calculated by utilizing a variety of density functional theory (DFT) approaches including the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), PBE-GGA+DFT-D3(vdW), Engel and Vosko GGA (EV-GGA), GGA plus Hubbard U parameter (GGA+U), hybrids Becke–Perdew–Wang hybrid functional (B3PW91), Becke–Lee–Yang–Parr hybrid functional (B3LYP), the PBE exchange-correlation functional (PBE0), and Tran and Blaha regular and non-regular modified Becke and Johnson (TB-mBJ) potential within a DFT frame work using augmented plane waves plus local orbital method. The comparison of the calculated results with the experimental values shows that the non-regular TB-mBJ method reproduces a correct experimental direct band gap of 2.12 eV at X symmetry for this compound. The effectiveness of this theoretical approach in the reproduction of the experimental band gap is due to the proper treatment of the electrons in the interstitial region of the crystal. Our results show that the C60 clusters are weakly interacting with each other in the fcc crystal. This study also reveals that the five-fold degeneracies of the isolated C60 molecule due to its icosahedral symmetry are completely lifted at an X symmetry point by the crystal field.


Optical materials crystalline buckyballs electronic structure fullerenes fcc-C60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Office of Graduate Studies, University of Isfahan (UI), Isfahan, Iran. We are also deeply thankful to Farhad Jalali-Asadrbadi for his very friendly graphical assistance.


  1. 1.
    B.C. Thompson and J.M.J. Fréchet, Angew. Chem. Int. Ed. 47, 58 (2007).CrossRefGoogle Scholar
  2. 2.
    J. Bredas, Science 343, 492 (2014).CrossRefGoogle Scholar
  3. 3.
    J. Nelson, Science 293, 1059 (2001).CrossRefGoogle Scholar
  4. 4.
    H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).CrossRefGoogle Scholar
  5. 5.
    M. Zhang, H. Wang, and C.W. Tang, Org. Electron. 13, 249 (2012).CrossRefGoogle Scholar
  6. 6.
    X. Li, Y. Chen, J. Sang, B. Mi, D. Mu, Z. Li, H. Zhang, Z. Gao, and W. Huang, Org. Electron. 14, 250 (2013).CrossRefGoogle Scholar
  7. 7.
    R. Lessmann, Z. Hong, S. Scholz, B. Maennig, M.K. Riede, and K. Leo, Org. Electron. 11, 539 (2010).CrossRefGoogle Scholar
  8. 8.
    N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl, Science 258, 1474 (1992).CrossRefGoogle Scholar
  9. 9.
    V. Shrotriya, Y. Yao, G. Li, and Y. Yang, Appl. Phys. Lett. 89, 063505 (2006).CrossRefGoogle Scholar
  10. 10.
    Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, Nat. Mater. 10, 296 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Anctil, C. Babbitt, R. Raffiaelle, and B. Landi, Environ. Sci. Technol. 45, 2353 (2011).CrossRefGoogle Scholar
  12. 12.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T. Nguyen, M. Dante, and A.J. Heeger, Science 317, 222 (2007).CrossRefGoogle Scholar
  13. 13.
    S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S. van der Poll, G.C. Bazan, and R.H. Friend, Science 343, 512 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Rao, P.C.Y. Chow, S. Gélinas, C.W. Schlenker, C. Li, H. Yip, A.K. Jen, D.S. Ginger, and R.H. Friend, Nature 500, 435 (2013).CrossRefGoogle Scholar
  15. 15.
    D.N. Congreve, J. Lee, N.J. Thompson, E. Hontz, S.R. Yost, P.D. Reusswig, M.E. Bahlke, S. Reineke, T. Van Voorhis, and M.A. Baldo, Science 340, 334 (2013).CrossRefGoogle Scholar
  16. 16.
    Y. Iwasa, T. Arima, R.M. Fleming, T. Siegrist, O. Zhou, R.C. Haddon, L.J. Rothberg, K.B. Lyons, H.L. Carter Jr, A.F. Hebard, R. Tycko, G. Dabbagh, J.J. Krajewski, G.A. Thomas, and T. Yagi, Science 264, 1570 (1994).CrossRefGoogle Scholar
  17. 17.
    E. Burgos, E. Halac, R. Weht, H. Bonadeo, E. Artacho, and P. Ordejón, Phys. Rev. Lett. 85, 2328 (2000).CrossRefGoogle Scholar
  18. 18.
    C.A. Perottoni and J.A.H. da Jornada, Phys. Rev. B 65, 224208 (2002).CrossRefGoogle Scholar
  19. 19.
    J. Zhao, M. Feng, J. Yang, and H. Petek, ACS Nano. 3, 853 (2009).CrossRefGoogle Scholar
  20. 20.
    A.Y. Ganin, Y. Takabayashi, P. Jeglic, D. Arcon, A. Potonik, P.J. Baker, Y. Ohishi, M.T. McDonald, M.D. Tzirakis, A. McLennan, G.R. Darling, M. Takata, M.J. Rosseinsky, and K. Prassides, Nature 466, 221 (2010).CrossRefGoogle Scholar
  21. 21.
    E. SjÄostedt, L. NordstrÄom, and D.J. Singh, Solid State Commun. 114, 15 (2000).CrossRefGoogle Scholar
  22. 22.
    G.K.H. Madsen, P. Blaha, K. Schwarz, E. SjÄostedt, and L. NordstrÄom, Phys. Rev. B 64, 195134 (2001).CrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  24. 24.
    E. Engel and S.H. Vosko, Phys. Rev. B 47, 13164 (1993).CrossRefGoogle Scholar
  25. 25.
    V.I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).CrossRefGoogle Scholar
  26. 26.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
  27. 27.
    M.T. Czyżyk and G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994).CrossRefGoogle Scholar
  28. 28.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993).CrossRefGoogle Scholar
  29. 29.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  30. 30.
    C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).CrossRefGoogle Scholar
  32. 32.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).CrossRefGoogle Scholar
  33. 33.
    D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 85, 155109 (2012).CrossRefGoogle Scholar
  34. 34.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  35. 35.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  36. 36.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties Vienna University of Technology, Austria, (2001).Google Scholar
  37. 37.
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).CrossRefGoogle Scholar
  38. 38.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  39. 39.
    F.D. Murnaghan, Proc. Nat. Acad. Sci. USA 30, 244 (1944).CrossRefGoogle Scholar
  40. 40.
    P.A. Heiney, J.E. Fischer, A.R. McGhie, W.J. Romanow, A.M. Denenstein, J.P. McCauley Jr, A.B. Smith, and D.E. Cox, Phys. Rev. Lett. 66, 2911 (1991).CrossRefGoogle Scholar
  41. 41.
    A. Kokalj, Comp. Mater. Sci. 28, 155 (2003). Code available from
  42. 42.
    S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991).CrossRefGoogle Scholar
  43. 43.
    N. Troullier and J.L. Martins, Phys. Rev. B 46, 1754 (1992).CrossRefGoogle Scholar
  44. 44.
    E.L. Shirley and S.G. Louie, Phys. Rev. Lett. 71, 133 (1993).CrossRefGoogle Scholar
  45. 45.
    R.W. Lof, M.A. van Veenendaal, B. Koopmans, H.T. Jonkman, and G.A. Sawatzky, Phys. Rev. Lett. 68, 3924 (1992).CrossRefGoogle Scholar
  46. 46.
    T. Takahashi, S. Suzuki, T. Morikawa, H. Katayama-Yoshida, S. Hasegawa, H. Inokuchi, K. Seki, K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba, Phys. Rev. Lett. 68, 1232 (1992).CrossRefGoogle Scholar
  47. 47.
    J.H. Weaver, P.J. Benning, F. Stepniak, and D.M. Poirier, J. Phys. Chem. Solids 53, 1707 (1992).CrossRefGoogle Scholar
  48. 48.
    T. Rabenau, A. Simon, R.K. Kremer, and E. Sohmen, Z. Phys. B 90, 69 (1993).CrossRefGoogle Scholar
  49. 49.
    J. Ren, Z. Ding, R. Zhang, and M.A. Van Hove, Phys. Rev. B 91, 045425 (2015).CrossRefGoogle Scholar
  50. 50.
    M. Han, G. Kim, J. Lee, and J. Yu, J. Chem. Phys. 130, 184107 (2009).CrossRefGoogle Scholar
  51. 51.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  52. 52.
    S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
  53. 53.
    P.A.M. Dirac, Math. Proc. Camb. Philos. Soc. 26, 376 (1930).CrossRefGoogle Scholar
  54. 54.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  55. 55.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).CrossRefGoogle Scholar
  56. 56.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 48, 4978 (1993).CrossRefGoogle Scholar
  57. 57.
    T. Risthaus and S. Grimme, J. Chem. Theory Comput. 9, 1580 (2013).CrossRefGoogle Scholar
  58. 58.
    A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).CrossRefGoogle Scholar
  59. 59.
    D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).CrossRefGoogle Scholar
  60. 60.
    M. Yazdanmehr, S. Jalali-Asadabadi, A. Nourmohammadi, M. Ghasemzadeh, and M. Rezvanian, Nanoscale Res. Lett. 7, 488 (2012).CrossRefGoogle Scholar
  61. 61.
    H. Papi, S. Jalali-Asadabadi, A. Nourmohammadi, I. Ahmad, J. Nematollahi, and M. Yazdanmehr, RSC Adv. 5, 31496 (2015).CrossRefGoogle Scholar
  62. 62.
    E. Gordanian, S. Jalali-Asadabadi, I. Ahmad, S. Rahimi, and M. Yazdani-Kachoei, RSC Adv. 5, 23320 (2015).CrossRefGoogle Scholar
  63. 63.
    M. Shafiq, I. Ahmad, and S. Jalali-Asadabadi, RSC Adv. 5, 31496 (2015).CrossRefGoogle Scholar
  64. 64.
    S. Jalali-Asadabadi, S. Cotteneer, H. Akbarzadeh, R. Saki, and M. Rots, Phys. Rev. B 66, 195103 (2002).CrossRefGoogle Scholar
  65. 65.
    S. Jalali-Asadabadi and H. Akbarzadeh, Phys. B 349, 76 (2004).CrossRefGoogle Scholar
  66. 66.
    S. Jalali-Asadabadi, Phys. Rev. B 75, 205130 (2007).CrossRefGoogle Scholar
  67. 67.
    S. Jalali-Asadabadi and F. Kheradmand, J. Appl. Phys. 108, 073531 (2009).CrossRefGoogle Scholar
  68. 68.
    M. Zarshenas and S. Jalali-Asadabadi, Thin Solid Films 520, 2901 (2012).CrossRefGoogle Scholar
  69. 69.
    M. Shafiq, I. Ahmad, and S. Jalali-Asadabadi, J. Appl. Phys. 116, 103905 (2014).CrossRefGoogle Scholar
  70. 70.
    M. Shafiq, S. Arif, I. Ahmad, S. Jalali-Asadabadi, M. Maqbool, and H.A. Rahnamaye Aliabad, J. Alloys Compd. 618, 292 (2015).CrossRefGoogle Scholar
  71. 71.
    E. Ghasemikhah, S. Jalali-Asadabadi, I. Ahmad, and M. Yazdani-Kachoei, RSC Adv. 5, 37592 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Saeid Jalali-Asadabadi
    • 1
  • E. Ghasemikhah
    • 1
  • T. Ouahrani
    • 2
  • B. Nourozi
    • 1
  • M. Bayat-Bayatani
    • 1
  • S. Javanbakht
    • 1
  • H. A. Rahnamaye Aliabad
    • 3
  • Iftikhar Ahmad
    • 4
    • 5
  • J. Nematollahi
    • 1
  • M. Yazdani-Kachoei
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of Isfahan (UI)IsfahanIran
  2. 2.Ecole Preparatoire en Sciences et TechniquesLaboratoire de Physique TheoriqueTlemcenAlgeria
  3. 3.Department of PhysicsHakim Sabzevari UniversitySabzevarIran
  4. 4.Center for Computational Materials ScienceUniversity of MalakandChakdaraPakistan
  5. 5.Department of PhysicsUniversity of MalakandChakdaraPakistan

Personalised recommendations