Advertisement

Journal of Electronic Materials

, Volume 45, Issue 1, pp 291–300 | Cite as

Phase Structure, Piezoelectric and Multiferroic Properties of SmCoO3-Modified BiFeO3-BaTiO3 Lead-Free Ceramics

  • Na Jiang
  • Mijie Tian
  • Lingling Luo
  • Qiaoji Zheng
  • Dongliang Shi
  • Kwok Ho LamEmail author
  • Chenggang Xu
  • Dunmin LinEmail author
Article

Abstract

(0.75−x)BiFeO3-0.25BaTiO3-xSmCoO3 + 1 mol.% MnO2 lead-free multiferroic ceramics were synthesized by a conventional ceramic fabrication technique. The effects of SmCoO3 on phase structure, piezoelectricity and multiferroicity of the ceramics were studied. All the ceramics can be well sintered at a low sintering temperature of 960°C. The crystalline structure of the ceramics is transformed from rhombohedral to tetragonal symmetry with increasing the amount of SmCoO3. A morphotropic phase boundary of rhombohedral and tetragonal phases is formed at x = 0.01–0.04. A small amount of SmCoO3 is shown to improve the ferroelectric, piezoelectric and magnetoelectric properties of the ceramics. For the ceramics with x = 0.01–0.03, enhanced resistivity (R ∼ 1.2 × 109 Ω cm to 2.1 × 109 Ω cm), piezoelectricity (d 33 ∼ 65 pC/N to 106 pC/N) and ferroelectricity (P r ∼ 6.38 μC/cm2 to 22.89 μC/cm2) are obtained. The ferromagnetism of the materials is greatly enhanced by the doping of SmCoO3 such that a very high magnetoelectric coefficient of ∼742 mV/(cm Oe) is obtained at x = 0.01, suggesting a promising potential in multiferroic devices.

Keywords

Lead-free ceramics BiFeO3 phase transitions piezoelectric properties multiferroic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the projects of Education Department of Sichuan Province (15ZA0037, 15ZB0032), and Science and Technology Bureau of Sichuan Province (2014JY0040). It was also partially supported from The Hong Kong Polytechnic University (1-ZVCG, 4-ZZDC).

References

  1. 1.
    B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971), pp. 115–120.Google Scholar
  2. 2.
    T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, and A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009).CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, X. Zhu, Y. Xu, H. Gao, Y. Xiao, D. Liang, J. Zhu, J. Zhu, and D. Xiao, J. Alloys Compd. 546, 57 (2013).CrossRefGoogle Scholar
  4. 4.
    F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, and D. Collison, J. Eur. Ceram. Soc. 30, 727 (2010).CrossRefGoogle Scholar
  5. 5.
    S.K. Pradhan and B.K. Roul, Phys. B 406, 3313 (2011).CrossRefGoogle Scholar
  6. 6.
    F. Tyholdt, S. Jorgensen, H. Fjellvag, and A.A. Gunnaes, Int. J. Mater. Res. 20, 2127 (2005).CrossRefGoogle Scholar
  7. 7.
    Q. Zheng, Y. Guo, F. Lei, X. Wu, and D. Lin, J. Mater. Sci.: Mater. Electron. 25, 2638 (2014).CrossRefGoogle Scholar
  8. 8.
    S.M. Selbach, M.A. Einarsrud, and T. Grande, Chem. Mater. 21, 169 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Mahesh Kumar, V.R. Palkar, K. Srinivas, and S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000).CrossRefGoogle Scholar
  10. 10.
    K.S. Nalwa and A. Garg, J. Appl. Phys. 103, 044101 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Uniyal and K.L. Yadav, J. Phys. Condens. Matter 21, 405901 (2009).CrossRefGoogle Scholar
  12. 12.
    Y.J. Wu, X.K. Chen, J. Zhang, and X.J. Chen, J. Appl. Phys. 111, 053927 (2012).CrossRefGoogle Scholar
  13. 13.
    T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, and T. Yogo, Appl. Phys. Exp. 1, 011502 (2008).CrossRefGoogle Scholar
  14. 14.
    Q. Zhou, C. Zhou, H. Yang, C. Yuan, G. Chen, L. Cao, and Q. Fan, J. Mater. Sci. Mater. Electron. 25, 196 (2014).CrossRefGoogle Scholar
  15. 15.
    X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, and D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014).CrossRefGoogle Scholar
  16. 16.
    D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, and W. Zhou, J. Eur. Ceram. Soc. 33, 3023 (2013).CrossRefGoogle Scholar
  17. 17.
    Q.Q. Wang, Z. Wang, X.Q. Li, and X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012).CrossRefGoogle Scholar
  18. 18.
    Y. Li, N. Jiang, K.H. Lam, Y. Guo, Q. Zheng, Q. Li, W. Zhou, Y. Wan, and D. Lin, J. Am. Ceram. Soc. 97, 3602 (2014).CrossRefGoogle Scholar
  19. 19.
    S.X. Huo, S.L. Yuan, Y. Qiu, Z.Z. Ma, and C.H. Wang, Mater. Lett. 68, 8 (2012).CrossRefGoogle Scholar
  20. 20.
    H. Yang, C. Zhou, X. Zhou, G. Chen, W. Li, and H. Wang, J. Eur. Ceram. Soc. 33, 1177 (2013).CrossRefGoogle Scholar
  21. 21.
    S.O. Leontsev and R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009).CrossRefGoogle Scholar
  22. 22.
    G.L. Yuan and S.W. Or, J. Appl. Phys. 100, 024109 (2006).CrossRefGoogle Scholar
  23. 23.
    V.R. Singh, V.K. Verma, K. Ishigami, G. Shibata, Y. Yamazaki, A. Fujimori , Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, Y. Nakamura, M. Azuma, and Y. Shimakawa, J. Appl. Phys. 114, 103905 (2013).CrossRefGoogle Scholar
  24. 24.
    D. Lin, K.W. Kwok, and H.L.W. Chan, Mater. Chem. Phys. 109, 455 (2008).CrossRefGoogle Scholar
  25. 25.
    M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1968).CrossRefGoogle Scholar
  26. 26.
    X.H. Wang, P.L. Chen, and I.W. Chen, J. Am. Ceram. Soc. 89, 431 (2006).CrossRefGoogle Scholar
  27. 27.
    D. Shi, K.H. Lam, and K. Li, J. Alloys Compd. 617, 485 (2014).CrossRefGoogle Scholar
  28. 28.
    J.S. Kim, C.I. Cheon, H.J. Kang, and P.W. Jang, J. Eur. Ceram. Soc. 27, 3951 (2007).CrossRefGoogle Scholar
  29. 29.
    D.V. Karpinsky, I.O. Troyanchuk, M. Tovar, V. Sikolenko, V. Efimov, and A.L. Kholkin, J. Alloys Compd. 55, 101 (2013).CrossRefGoogle Scholar
  30. 30.
    H. Zhang, W. Jo, K. Wang, and K.G. Webber, Ceram. Int. 40, 4759 (2014).CrossRefGoogle Scholar
  31. 31.
    G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).CrossRefGoogle Scholar
  32. 32.
    M. Dolgos, U. Adem, X. Wan, Z. Xu, A.J. Bell, T.P. Comyn, T. Stevenson, and J. Bennett, Chem. Sci. 3, 1426 (2012).CrossRefGoogle Scholar
  33. 33.
    L. Lutterotti, MAUD: a friendly Java program for Material Analysis Using Diffraction, CPD Newsletter (IUCr) No. 24, December 2000Google Scholar
  34. 34.
    Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, and D. Lin, J. Appl. Phys. 116, 184101 (2014).CrossRefGoogle Scholar
  35. 35.
    B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, and G. Shirane, Phys. Rev. B. 61, 8687 (2000).CrossRefGoogle Scholar
  36. 36.
    C.G. Xu, D.M. Lin, and K.W. Kwok, Solid State Sci. 10, 934 (2008).CrossRefGoogle Scholar
  37. 37.
    Q. Zheng, D. Lin, X. Wu, C. Xu, C. Yang, and K.W. Kwok, J. Mater. Sci.: Mater. Electron. 21, 625 (2010).CrossRefGoogle Scholar
  38. 38.
    G.L. Yuan, S.W. Or, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 89, 052905 (2006).CrossRefGoogle Scholar
  39. 39.
    Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, and S.L. Yuan, Solid State Sci. 13, 2196 (2011).CrossRefGoogle Scholar
  40. 40.
    J.M. Caicedo, J.A. Zapata, M.E. Gomez, and P. Prieto, J. Appl. Phys. 103, 07E306 (2008).CrossRefGoogle Scholar
  41. 41.
    V.B. Naik and R. Mahendiran, Solid State Commun. 149, 754 (2009).CrossRefGoogle Scholar
  42. 42.
    D.R. Patil and B.K. Chougule, J. Alloys Compd. 458, 335 (2008).CrossRefGoogle Scholar
  43. 43.
    A. Srinivas, R.V. Krishnaiah, T. Karthik, P. Suresh, S. Asthana, and S.V. Kamat, Appl. Phys. Lett. 101, 082902 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Na Jiang
    • 1
  • Mijie Tian
    • 1
  • Lingling Luo
    • 1
  • Qiaoji Zheng
    • 1
  • Dongliang Shi
    • 2
  • Kwok Ho Lam
    • 2
    Email author
  • Chenggang Xu
    • 1
  • Dunmin Lin
    • 1
    Email author
  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina
  2. 2.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong

Personalised recommendations