Journal of Electronic Materials

, Volume 45, Issue 3, pp 1397–1407 | Cite as

The Influence of Synthesis Procedure on the Microstructure and Thermoelectric Properties of p-Type Skutterudite Ce0.6Fe2Co2Sb12

  • A. Sesselmann
  • G. SkomedalEmail author
  • H. Middleton
  • E. Müller


We have investigated p-type skutterudite samples with the nominal composition Ce0.6Co2Fe2Sb12 synthesized from elementary constituents by gas atomization and conventional melting, and also those synthesized from ternary and binary phases such as Fe x Co1−x Sb2 and CeSb2, respectively, which were mixed and subsequently ball-milled. We conducted measurements of the temperature-dependent transport properties (Seebeck coefficient, thermal/electrical conductivity) and carried out scanning electron microscope analysis, electron probe micro-analysis and powder x-ray diffraction to obtain information about microstructure and elementary distribution of the phases. We show that the presented synthesis methods each possess particular strengths but ultimately, however, lead to different final compositions of the skutterudite phase and secondary phases, which significantly influence the thermoelectric properties of the material. Material prepared using an educt method gave the best thermoelectric properties with a peak ZT of 0.7. Furthermore, we show that even an apparent homogeneous skutterudite area within the material exhibits varying stoichiometry in each grain even though they conform to the solubility range of cerium in this p-type skutterudite. Moreover, we show that marcasite is preferred as an educt over the arsenopyrite phase and discuss the formation of the p-type skutterudite phase with these synthesis techniques.


p-Type skutterudite synthesis microstructure peritectic reaction transformation rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Uher, Modules, Systems, and Applications in Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 2012), p. 10.1.Google Scholar
  2. 2.
    H. Li, X. Tang, Q. Zhang, and C. Uher, Appl. Phys. Lett. 93, 252109 (2008).CrossRefGoogle Scholar
  3. 3.
    G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher, J. Mater. Chem. A 1, 12657 (2013).CrossRefGoogle Scholar
  4. 4.
    H. Uchida, V. Crnko, H. Tanaka, A. Kasama, and K. Matsubara, XVII International Conference on Thermoelectrics, 1998.Google Scholar
  5. 5.
    Q. Jie, H. Wang, W. Liu, H. Wang, G. Chen, and Z. Ren, Phys. Chem. Chem. Phys. 15, 6809 (2013).CrossRefGoogle Scholar
  6. 6.
    L. Chen, X. Tang, T. Goto, and T. Hirai, J. Mater. Res. 15, 2276 (2000).CrossRefGoogle Scholar
  7. 7.
    X.F. Tang, L.D. Chen, T. Goto, T. Hirai, and R.Z. Yuan, J. Mater. Res. 17, 2953 (2002).CrossRefGoogle Scholar
  8. 8.
    J.P. Fleurial, T. Caillat, and A. Borshchevsky, XVI International Conference on Thermoelectrics, 1997.Google Scholar
  9. 9.
    X. Tang, L. Chen, T. Goto, and T. Hirai, J. Mater. Res. 16, 837 (2001).CrossRefGoogle Scholar
  10. 10.
    B. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.P. Fleurial, T. Caillat, and A. Borshchevsky, Phys Rev B 55, 1476 (1997).CrossRefGoogle Scholar
  11. 11.
    A. May and G.J. Snyder, Materials, Preparation, and Characterization in Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 2012), p. 11.1.Google Scholar
  12. 12.
    H. Kitagawa, M. Hasaka, T. Morimura, H. Nakashima, and S. Kondo, Mater. Res. Bull. 35, 185 (2000).CrossRefGoogle Scholar
  13. 13.
    G. Brostigen and A. Kjekshus, Acta Chem. Scand. 24, 2983 (1970).CrossRefGoogle Scholar
  14. 14.
    R. Hu, V.F. Mitrović, and C. Petrovic, Phys. Rev. B 74, 195130 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Kjekshus and T. Rakke, Acta Chem. Scand. 31, 2983 (1977).Google Scholar
  16. 16.
    J.B. Goodenough, J. Solid State Chem. 5, 144 (1972).CrossRefGoogle Scholar
  17. 17.
    F. Hulliger and E. Mooser, J. Phys. Chem. Solids 26, 429 (1965).CrossRefGoogle Scholar
  18. 18.
    G. Brostigen and A. Kjekshus, Acta Chem. Scand. 24, 2993 (1970).CrossRefGoogle Scholar
  19. 19.
    X. Shi, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005).CrossRefGoogle Scholar
  20. 20.
    Z.G. Mei, W. Zhang, L.D. Chen, and J. Yang, Phys. Rev. B 74, 153202 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Bhaskar, Y.W. Yang, and C.J. Liu, Ceram. Int. 41, 6381 (2015).CrossRefGoogle Scholar
  22. 22.
    P. Amornpitoksuk, H. Li, J.C. Tedenac, S.G. Fries, and D. Ravot, Intermetallics 15, 475 (2007).CrossRefGoogle Scholar
  23. 23.
    D. Bérardan, C. Godart, E. Alleno, E. Leroy, and P. Rogl, J. Alloy. Compd. 350, 30 (2003).CrossRefGoogle Scholar
  24. 24.
    H.W. Kerr and W. Kurz, Int. Mater. Rev. 41, 129 (1996).CrossRefGoogle Scholar
  25. 25.
    H. Okamoto, JPE 22, 88 (2001).CrossRefGoogle Scholar
  26. 26.
    A.M. Gusak, Diffusion-Controlled Solid State Reactions: In Alloys, Thin-Films, and Nanosystems, ed. A.M. Gusak (Weinheim: Wiley, 2010), p. 37.CrossRefGoogle Scholar
  27. 27.
    P.G.-Y. Huang, C.-H. Lu, and T.W.-H. Sheu, Mater. Sci. Eng. B 107, 39 (2004).CrossRefGoogle Scholar
  28. 28.
    A. Khawam and D.R. Flanagan, J. Phys. Chem. B 110, 17315 (2006).CrossRefGoogle Scholar
  29. 29.
    R. Liu, P. Qiu, X. Chen, X. Huang, and L. Chen, J. Mater. Res. 26, 1813 (2011).CrossRefGoogle Scholar
  30. 30.
    L. Nordström and D.J. Singh, Phys. Rev. B 53, 1103 (1996).CrossRefGoogle Scholar
  31. 31.
    G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • A. Sesselmann
    • 1
  • G. Skomedal
    • 2
    Email author
  • H. Middleton
    • 2
  • E. Müller
    • 1
    • 3
  1. 1.Institute of Materials ResearchGerman Aerospace Centre (DLR) CologneGermany
  2. 2.Faculty of Engineering and ScienceUniversity of AgderGrimstadNorway
  3. 3.Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany

Personalised recommendations