Advertisement

Journal of Electronic Materials

, Volume 45, Issue 3, pp 1382–1388 | Cite as

Miscibility Gap in the Phase Diagrams of Thermoelectric Half-Heusler Materials CoTi\(_{1-x}Y_x\)Sb (Y = Sc, V, Mn, Fe)

  • Joaquin Miranda MenaEmail author
  • Elisabeth Rausch
  • Siham Ouardi
  • Thomas Gruhn
  • Gerhard H. Fecher
  • Heiko G. Schoberth
  • Heike Emmerich
  • Claudia Felser
Article

Abstract

The half-Heusler system CoTi\({_{1-x}Y_x}\)Sb (Y = Sc, V, Mn, Fe) has been investigated by means of an ab initio-based mean-field model which provides phase diagrams of alloys. Co(Ti,Y)Sb materials show a miscibility gap, which leads to spontaneous demixing within a spinodal region. The results are compared with experimental investigations of microstructure and transport properties of the alloys. The thermoelectric properties of the solid solution were investigated comprehensively by measuring the temperature dependence of the Seebeck coefficient as well as electrical and thermal conductivity. Compared with pure CoTiSb, the thermal conductivity of substituted CoTi\({_{0.9}Y_{0.1}}\)Sb was significantly reduced by approximately 53% for Y = V. Here, we report on the effect of phase separation in the Co(Ti,Y)Sb system and its consequences for the thermoelectric figure or merit.

Keywords

Thermoelectric materials transition-metal alloys and compounds atomic-scale structure Heusler compounds phase separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft (Program SPP 1386). We thank Sylvia Kostmann for specimen preparation, and Monika Eckert, Petra Scheppan, and Ulrich Burkhardt for SEM and EDX measurements.

References

  1. 1.
    D. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC) Taylor and Francis, Boca Raton, 2006)Google Scholar
  2. 2.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Fu, T. Zhu, Y. Liu, H. Xie, and X. Zhao, Adv. Energy Mater. 8, 216 (2015)Google Scholar
  5. 5.
    B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, (2012)Google Scholar
  6. 6.
    S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 82 (2005)CrossRefGoogle Scholar
  7. 7.
    N. Shutoh and S. Sakurada, J. Alloys Compd. 389, 204 (2005)CrossRefGoogle Scholar
  8. 8.
    W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Schwall and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013)CrossRefGoogle Scholar
  10. 10.
    E. Rausch, B. Balke, S. Ouardi, and C. Felser, Phys. Chem. Chem. Phys. 16, 25258 (2014)CrossRefGoogle Scholar
  11. 11.
    E. Rausch, B. Balke, T. Deschauer, S. Ouardi, and C. Felser, APL Mater. 3, 4 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Krez, J. Schmitt, G.J. Snyder, C. Felser, W. Hermes, and M. Schwind, J. Mater. Chem. A 2, 13513 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Chen and Z. Ren, Mater. Today 16, 387 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Yan, W. Liu, S. Chen, H. Wang, Q. Zhang, G. Chen, and Z. Ren, Adv. Energy Mater. 3, 1195 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Joshi, T. Dahai, S. Chen, H. Wang, J. Shiomi, G. Chen, and Z. Ren, Nano Energy 2, 82 (2013)CrossRefGoogle Scholar
  16. 16.
    T. Graf, P. Klaer, J. Barth, B. Balke, H.-J. Elmers, and C. Felser, Scripta Mater. 63, 1216 (2010)CrossRefGoogle Scholar
  17. 17.
    F. Wang, T. Fukuhaha, K. Maezawa, and S. Masubuchi, Jpn. J. Appl. Phys. 49, 053002 (2010)CrossRefGoogle Scholar
  18. 18.
    B.R.K. Nanda and I. Dasgupta, J. Phys. Condens. Matter 17, 5037 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Lee, F.P. Poudeu, and S.D. Mahanti, Phys. Rev. B 83, 085204 (2011)CrossRefGoogle Scholar
  20. 20.
    H.M. Huang, S.J. Luo, and K.L. Yao, Physica B 406, 1368 (2011)CrossRefGoogle Scholar
  21. 21.
    H.C. Kandpal, C. Felser, and R. Seshadri J. Phys. D.: Appl. Phys. 39, 776 (2006)CrossRefGoogle Scholar
  22. 22.
    L. Castelliz, Mh. Chem. (Chem. Month.) 83, 314 (1952)Google Scholar
  23. 23.
    G.D. Garbulsky and G. Ceder, Phys. Rev. B 51, 67 (1995)CrossRefGoogle Scholar
  24. 24.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)CrossRefGoogle Scholar
  25. 25.
    G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  26. 26.
    J.M. Mena, H.G. Schoberth, T. Gruhn, and H. Emmerich, J. Alloys Compd. 25, 728 (2015)CrossRefGoogle Scholar
  27. 27.
    T.Q. Hung, M.S. Li, and M. Cieplak, J. Magn. Magn. Mater. 138, 153 (1994)Google Scholar
  28. 28.
    M. Plischke and B. Bergersen, Equilibrium Statistical Physics 3rd ed. (World Scientific, Singapore 2006), p. 114Google Scholar
  29. 29.
    N. Sodre, J.C. Garcia, L.V.C. Assali, P.G. Gonzales-Ormen, P. Blaha, H.M. Petrilli, and C.G. Schön, Phys. Status Solidi B 250, 77 (2013)CrossRefGoogle Scholar
  30. 30.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015)CrossRefGoogle Scholar
  31. 31.
    V. Ksenofontov, G. Melnyk, M. Wojcok, S. Wurmehl, K. Kroth, S. Reiman, P. Blaha, and C. Felser, Phys. Rev. B 74, 134426 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Ouardi, G.H. Fecher, C. Felser, M. Schwall, S.S. Naghavi, A. Gloskovskii, B. Balke, J. Hamrle, K. Postava, J. Pistora, S. Ueda, and K. Kobayashi, Phys. Rev. B 86, 045116 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, H. Huang, and X. Ruan, Phys. Rev. B 90, 165406 (2014)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Joaquin Miranda Mena
    • 1
    Email author
  • Elisabeth Rausch
    • 2
  • Siham Ouardi
    • 2
  • Thomas Gruhn
    • 1
  • Gerhard H. Fecher
    • 2
  • Heiko G. Schoberth
    • 1
  • Heike Emmerich
    • 1
  • Claudia Felser
    • 2
  1. 1.Lehrstuhl für Material- und Prozesssimulation, Universität BayreuthBayreuthGermany
  2. 2.Max Planck Institute for Chemical Physics of SolidsDresdenGermany

Personalised recommendations