Journal of Electronic Materials

, Volume 44, Issue 12, pp 4825–4835 | Cite as

Temperature-Dependent Modeling and Performance Evaluation of Multi-Walled CNT and Single-Walled CNT as Global Interconnects

Article

Abstract

The influence of temperature on multi-walled carbon nanotube (MWCNT) interconnects have been studied. A temperature-dependent equivalent circuit model is presented for the impedance parameters of MWCNT bundle interconnects that captures various electron–phonon scattering mechanisms as a function of temperature. To estimate the performance of MWCNT bundle interconnects, the signal delay, power dissipation and power delay product (PDP) were simulated based on a temperature-dependent model that results in improvement in the delay, power and PDP estimation accuracy compared to the temperature-independent model. The results revealed that the power delay product of MWCNT bundle interconnects increases with increasing temperature from 200 K to 450 K for three different technology nodes, i.e., 32 nm, 22 nm and 16 nm, based upon a 1000-μm interconnect length. A similar analysis was performed for single-walled carbon nanotube (SWCNT) bundle interconnects and the results are compared with MWCNT bundle interconnects, indicating that the delay, power and power delay product (PDP) also increased with increasing temperature from 200 K to 450 K. The interconnects of the MWCNT bundle interconnects gave a better performance in terms of delay, power and PDP as compared to the SWCNT bundle interconnects.

Keywords

SWCNT MWCNT temperature-dependent impedance model VLSI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, J. Appl. Phys. 97, 023706/1 (2005).Google Scholar
  2. 2.
    A. Naeemi, R. Sarvari, and J.D. Meindl, Electron. Device Lett. 26, 84 (2005).Google Scholar
  3. 3.
    H. Li, C. Xu, N. Srivastava, and K. Banerjee, IEEE Trans. Electron Devices 56, 1799 (2009).CrossRefGoogle Scholar
  4. 4.
    N. Srivastava and K. Banerjee, IEEE/ACM Intl. Conf. on ICCAD (2005), pp. 383–390.Google Scholar
  5. 5.
    Mayank K. Rai, J. Comput. Electron. 12, 796 (2013).CrossRefGoogle Scholar
  6. 6.
    Q. Jiang, Y. Zhao, X.Y. Lu, Q. Zhan, and Y.L. Zhou, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-006-7473-4.
  7. 7.
    N. Srivastava, H. Li, F. Kreupl, and K. Banerjee, IEEE Trans. Nanotechnol. 8, 542 (2009).CrossRefGoogle Scholar
  8. 8.
    P.J. Burke, IEEE Trans. Nanotechnol. 1, 129 (2002).CrossRefGoogle Scholar
  9. 9.
    A. Hosseini, Microelectron. Eng. 87, 1955 (2010).CrossRefGoogle Scholar
  10. 10.
    E. Pop, J. Appl. Phys. 101, 093710 (2007).CrossRefGoogle Scholar
  11. 11.
    E. Pop, D. Mann, J. Reifenberg, K. Goodson, and H. Dai, Technical Digest of IEEE International Electron Device Meeting 2005 IEDM (2005), pp. 254–256.Google Scholar
  12. 12.
    A.G. Chiarillo, IEEE Electron Devices Lett. 55, 97 (2010).Google Scholar
  13. 13.
    W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, and H. Park, Nature 411, 665 (2001).CrossRefGoogle Scholar
  14. 14.
    H. Li, W.Y. Yin, K. Banerjee, and J.F. Mao, IEEE Trans. Electron Devices 55, 1328 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Sahoo and H. Rahaman, IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO) (2013), pp. 200–203.Google Scholar
  16. 16.
    D. Rossi, IEEE Trans. on Nanotechnol. 6, 133 (2007).CrossRefGoogle Scholar
  17. 17.
    M. Naeemi, IEEE Electron Device Lett. 27, 338 (2006).CrossRefGoogle Scholar
  18. 18.
    M.K. Majumder, P.K. Das, and B.K. Kaushik, Microelectron. Reliab. 54(11), 2570 (2014).Google Scholar
  19. 19.
    M.K. Majumder, N.D. Pandya, B.K. Kaushik, and S.K. Manhas, IEEE Electron Device Lett. 33, 1080 (2012).Google Scholar
  20. 20.
    A. Srivastav, Y. Xu, and A.K. Sharma, J. Nanophotonics 4(1), 041690 (2010).Google Scholar
  21. 21.
    Y.G. Yoon, P. Delaney, and S.G. Louie, Phys. Rev. B 66(7), 073407/1 (2002).Google Scholar
  22. 22.
    ITRS, International Technology Roadmap for Semiconductor, Edition (2009), http://public.itrs.net. Accessed 4 Sept 2014
  23. 23.
    B. Kumar, B.K. Kaushik, and Y.S. Negi, J. Mater. Sci. Mater. Electron. 25, 1 (2014)Google Scholar
  24. 24.
    P.G. Collins and P. Avouris, Appl. Phys. A, Solids Surf. 74(3), 329 (2002)Google Scholar
  25. 25.
    J.F. Xu, H. Li, W.Y. Yin, J.F. Mao, and L.W. Li, IEICE Trans. Electron. E90-C, 179 (2007).Google Scholar
  26. 26.
    Predictive technology model [Online], www.ptm.asu.edu. Accessed 12 Jan 2015

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar UniversityPatialaIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of TechnologyJallandharIndia

Personalised recommendations