Advertisement

Journal of Electronic Materials

, Volume 45, Issue 3, pp 1369–1376 | Cite as

Microstructure and Thermoelectric Properties of Bulk Cobalt Antimonide (CoSb3) Skutterudites Obtained by Pulse Plasma Sintering

  • M.J. KruszewskiEmail author
  • R. Zybała
  • Ł. Ciupiński
  • M. Chmielewski
  • B. Adamczyk-Cieślak
  • A. Michalski
  • M. Rajska
  • K.J. Kurzydłowski
Open Access
Article

Abstract

The use of the pulse plasma sintering technique for CoSb3 thermoelectric material consolidation is reported in this work. The influence of sintering temperature on the microstructure and material properties such as the Seebeck coefficient, electrical resistivity, and thermal conductivity has been investigated. It is shown that, for samples fabricated at 923 K and 973 K, there were no significant differences in the average grain size or final phase composition. In both cases, a fine-grained polycrystalline structure of the compacts with density nearly equal to the theoretical value was achieved. Both samples were composed almost uniquely of CoSb3 phase. The measured thermoelectric parameters such as the Seebeck coefficient, electrical, and thermal conductivity showed similar dependence on temperature. For both samples, the Seebeck coefficient was negative at room temperature and showed a transition from n- to p-type conduction over the temperature range of 400 K to 460 K. The measured minimum thermal conductivity values, 4 W m−1 K−1 to 5 W m−1 K−1 at 723 K, are typical for undoped bulk CoSb3. A maximum ZT value of 0.08 at 623 K was obtained for the sample consolidated at 923 K for 5 min. The results of this work are very promising from the point of view of use of pulse plasma sintering as an alternative method for fabrication of a broad range of thermoelectric materials in the future.

Keywords

Thermoelectric skutterudite CoSb3 pulse plasma sintering powder metallurgy microstructure 

References

  1. 1.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. Engl. 48, 8616 (2009).CrossRefGoogle Scholar
  2. 2.
    J.R. Salvador, J. Yang, H. Wang, and X. Shi, J. Appl. Phys. 107, 043705 (2010).CrossRefGoogle Scholar
  3. 3.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  4. 4.
    G.S. Nolas, X. Lin, J. Martin, M. Beekman, and H. Wang, J. Electron. Mater. 38, 1052 (2009).CrossRefGoogle Scholar
  5. 5.
    W. Zhao, P. Wei, Q. Zhang, H. Peng, W. Zhu, D. Tang, J. Yu, H. Zhou, Z. Liu, X. Mu, D. He, J. Li, C. Wang, X. Tang, and J. Yang, Nat. Commun. 6, 6197 (2015).CrossRefGoogle Scholar
  6. 6.
    L. Yang, J.S. Wu, and L.T. Zhang, J. Alloys Compd. 375, 114 (2004).CrossRefGoogle Scholar
  7. 7.
    K.T. Wojciechowski, J. Alloys Compd. 439, 18 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Khan, M. Saleemi, M. Johnsson, L. Han, N.V. Nong, M. Muhammed, and M.S. Toprak, J. Alloys Compd. 612, 293 (2014).CrossRefGoogle Scholar
  9. 9.
    Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Müller, S. Li, M. Toprak, and M. Muhammed, J. Appl. Phys. 101, 053713 (2007).CrossRefGoogle Scholar
  10. 10.
    W.-S. Liu, B.-P. Zhang, J.-F. Li, and L.-D. Zhao, J. Phys. D Appl. Phys. 40, 566 (2007).CrossRefGoogle Scholar
  11. 11.
    J.L. Mi, T.J. Zhu, X.B. Zhao, and J. Ma, J. Appl. Phys. 101, 054314 (2007).CrossRefGoogle Scholar
  12. 12.
    W.-S. Liu, B.-P. Zhang, J.-F. Li, and L.-D. Zhao, J. Phys. D Appl. Phys. 40, 6784 (2007).CrossRefGoogle Scholar
  13. 13.
    P. Nieroda, R. Zybala, and K.T. Wojciechowski, in AIP Conference Proceedings (2012), pp. 199–202.Google Scholar
  14. 14.
    R. Zybala and K.T. Wojciechowski, in AIP Conference Proceedings (2012), pp. 393–396.Google Scholar
  15. 15.
    T. Liang, X. Su, Y. Yan, G. Zheng, Q. Zhang, H. Chi, X. Tang, and C. Uher, J. Mater. Chem. A 2, 17914 (2014).CrossRefGoogle Scholar
  16. 16.
    X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, and C. Uher, Nat. Commun. 5, 4908 (2014).CrossRefGoogle Scholar
  17. 17.
    J.G. Santanach, C. Estournès, A. Weibel, G. Chevallier, V. Bley, C. Laurent, and A. Peigney, J. Eur. Ceram. Soc. 31, 2247 (2011).CrossRefGoogle Scholar
  18. 18.
    K. Sairam, J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, R.K. Fotedar, P. Nanekar, and R.C. Hubli, Int. J. Refract. Met. Hard Mater. 42, 185 (2014).CrossRefGoogle Scholar
  19. 19.
    A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, and K.J. KurzydŁowski, Mater. Des. 76, 97 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Grzonka, J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, and K.J. KurzydŁowski, Mater. Charact. 99, 188 (2015).CrossRefGoogle Scholar
  21. 21.
    M. Rosiński, J. Wachowicz, T. Płociński, T. Truszkowski, and A. Michalski, Ceram. Trans. 243, 181 (2014).Google Scholar
  22. 22.
    M. Rosiński, M.J. Kruszewski, A. Michalski, E. Fortuna-Zaleśna, Ł. Ciupiński, and K.J. KurzydŁowski, Fusion Eng. Des. 86, 2573 (2011).CrossRefGoogle Scholar
  23. 23.
    M.J. Kruszewski, Ł. Ciupiński, M. Rosiński, A. Michalski, and K.J. KurzydŁowski, Fusion Eng. Des. 88, 2573 (2013).CrossRefGoogle Scholar
  24. 24.
    A.T. Krawczynska, T. Brynk, M. Rosinski, A. Michalski, S. Gierlotka, E. Grzanka, S. Stelmakh, B. Palosz, M. Lewandowska, and K.J. Kurzydlowski, in Nanometals-Status Perspect. Proceedings of 33rd Risø International Symposium on Materials Science (Roskilde, Denmark: Department of Wind Energy, Technical University of Denmark, 2012), p. 8.Google Scholar
  25. 25.
    X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, Chem. Mater. 23, 2948 (2011).CrossRefGoogle Scholar
  26. 26.
    G. Xie, O. Ohashi, K. Chiba, N. Yamaguchi, M. Song, K. Furuya, and T. Noda, Mater. Sci. Eng. A 359, 384 (2003).CrossRefGoogle Scholar
  27. 27.
    U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir, Mater. Sci. Eng. A 407, 24 (2005).CrossRefGoogle Scholar
  28. 28.
    Y. Cai, D. Zhao, X. Zhao, L. Chen, W. Jiang, and P. Zhai, Mater. Trans. 50, 782 (2009).CrossRefGoogle Scholar
  29. 29.
    T. Caillat, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
  30. 30.
    M.-J. Kim and I.-H. Kim, Met. Mater. Int. 16, 459 (2010).CrossRefGoogle Scholar
  31. 31.
    L. Yang, J.S. Wu, and L.T. Zhang, Mater. Des. 25, 97 (2004).CrossRefGoogle Scholar
  32. 32.
    H. Nakagawa, H. Tanaka, A. Kasama, H. Anno, and K. Matsubara, in XVI ICT“97. Proc. ICT”97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291) (IEEE, 1997), pp. 351–355.Google Scholar
  33. 33.
    K.T. Wojciechowski, J. Toboła, and J. Leszczynski, J. Alloys Compd. 361, 19 (2003).CrossRefGoogle Scholar
  34. 34.
    M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).CrossRefGoogle Scholar
  35. 35.
    J.X. Zhang, Q.M. Lu, K.G. Liu, L. Zhang, and M.L. Zhou, Mater. Lett. 58, 1981 (2004).CrossRefGoogle Scholar
  36. 36.
    S. Katsuyama, Y. Shichijo, M. Ito, K. Majima, and H. Nagai, J. Appl. Phys. 84, 6708 (1998).CrossRefGoogle Scholar
  37. 37.
    K. Wojciechowski, P. Nieroda, J. Toboła, and R. Zybała, Ceram. Mater. 62, 60 (2010).Google Scholar
  38. 38.
    T. Dahal, Q. Jie, W. Liu, K. Dahal, C. Guo, Y. Lan, and Z. Ren, J. Alloys Compd. 623, 104 (2015).CrossRefGoogle Scholar
  39. 39.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Kerber, M. Zehetbauer, and S. Puchegger, Intermetallics 18, 2435 (2010).CrossRefGoogle Scholar
  40. 40.
    G. Rogl, A. Grytsiv, P. Rogl, E. Royanian, E. Bauer, J. Horky, D. Setman, E. Schafler, and M. Zehetbauer, Acta Mater. 61, 6778 (2013).CrossRefGoogle Scholar
  41. 41.
    C. Soon-Mok, L. Jae-Ki, S. Won-Seon, L. Hong-Lim, and K. Il-Ho, J. Korean Phys. Soc. 57, 1010 (2010).CrossRefGoogle Scholar
  42. 42.
    W.-S. Liu, B.-P. Zhang, J.-F. Li, H.-L. Zhang, and L.-D. Zhao, J. Appl. Phys. 102, 103717 (2007).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of Electronic Materials TechnologyWarsawPoland
  3. 3.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations