Journal of Electronic Materials

, Volume 45, Issue 3, pp 1316–1320 | Cite as

Nanostructured TTT(TCNQ)2 Organic Crystals as Promising Thermoelectric n-Type Materials: 3D Modeling

  • Ionel Sanduleac
  • Anatolie Casian


The thermoelectric properties of quasi-one-dimensional TTT(TCNQ)2 organic crystals have been investigated to assess the prospect of using this type of compound as an n-type thermoelectric material. A three-dimensional (3D) physical model was elaborated. This takes into account two of the most important interactions of conduction electrons with longitudinal acoustic phonons—scattering of the electrons’ by neighboring molecular chains and scattering by impurities and defects. Electrical conductivity, thermopower, power factor, electronic thermal conductivity, and thermoelectric figure of merit in the direction along the conducting molecular chains were calculated numerically for different crystal purity. It was shown that in stoichiometric compounds the thermoelectric figure of merit ZT remains small even after an increase of crystal perfection. The thermoelectric properties may be significantly enhanced by simultaneous increases of crystal perfection and electron concentration. The latter can be achieved by additional doping with donors. For less pure crystals, the interaction with impurities dominates the weak interchain interaction and the simpler one-dimensional (1D) physical model is applicable. When the impurity scattering is reduced, the interchain interaction begins to limit carrier mobility and use of the 3D physical model is required. The optimum properties enabling prediction of ZT ∼ 1 were determined.


TTT(TCNQ)2 electrical conductivity Seebeck coefficient power factor thermal conductivity thermoelectric figure of merit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge support from the EU Commission FP7 program under the Grant No. 308768.


  1. 1.
    T. Takabatake, S. Koichiro, and T. Nakayama, Rev. Mod. Phys. 86, 669 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Rowe, L. Zhou, and D. Banerjee, J. Electron. Mater. 44, 425 (2015).CrossRefGoogle Scholar
  3. 3.
    S. Xun, J. Yang, and J. Salvador, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  4. 4.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  5. 5.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).CrossRefGoogle Scholar
  6. 6.
    L. Weishu, H.S. Kim, S. Chen, and Q. Jie, Proc. Natl. Acad. Sci. USA 112, 3269 (2015).CrossRefGoogle Scholar
  7. 7.
    G. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 12, 719 (2013).CrossRefGoogle Scholar
  8. 8.
    N. Toshima, K. Oshima, and H. Anno, Adv. Mater. 27, 2246 (2015).CrossRefGoogle Scholar
  9. 9.
    S.P. Ashby, J. García-Cañadas, G. Min, and Y. Chao, J. Electron. Mater. 42, 1495 (2013).CrossRefGoogle Scholar
  10. 10.
    Y. Wang, J. Zhou, and R. Yang, J. Phys. Chem. C 115, 24418 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Casian, Thermoelectric Handbook, Macro to Nano, Chap.36, ed. D.M. Rowe (Boca Raton: CRC Press, 2006), Google Scholar
  12. 12.
    A. Casian and I. Sanduleac, J. Electron. Mater. 43, 3740 (2014).CrossRefGoogle Scholar
  13. 13.
    I.I. Sanduleac, A.I. Casian, and J. Pflaum, J. Nanoelectron. Optoelectron. 9, 247 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Casian, J. Pflaum, and I. Sanduleac, J. Thermoelectr. 1, 16 (2015).Google Scholar
  15. 15.
    L. Buravov, O. Eremenko, R. Lyubovskii, and E. Yagubskii, J. Exp. Theor. Phys. 20, 208 (1974).Google Scholar
  16. 16.
    E. Conwell, Phys. Rev. B 22, 1761 (1980).CrossRefGoogle Scholar
  17. 17.
    M. Sing, U. Schwingenschlögl, R. Claessen, P. Blaha, J.M.P. Carmelo, L.M. Martelo, P.D. Sacramento, M. Dressel, and C.S. Jacobsen, Phys. Rev. B 68, 125111 (2003).CrossRefGoogle Scholar
  18. 18.
    G. Soda, D. Jerome, M. Weger, J. Alizon, J. Gallice, H. Robert, J.M. Fabre, and L. Giral, J. Phys. II Fr. 38, 931 (1977).CrossRefGoogle Scholar
  19. 19.
    I. Sanduleac, J. Thermoelectr. 4, 50 (2014).Google Scholar
  20. 20.
    I. Sanduleac, Mold. J. Phys. Sci. (2015), in press.Google Scholar
  21. 21.
    L. Cano-Cortes, A. Dolfen, and J. Merino, Eur. Phys. J. B 56, 173 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Computers, Informatics and MicroelectronicsTechnical University of MoldovaChisinauRepublic of Moldova

Personalised recommendations