Journal of Electronic Materials

, Volume 44, Issue 11, pp 4482–4491 | Cite as

International Round-Robin Study of the Thermoelectric Transport Properties of an n-Type Half-Heusler Compound from 300 K to 773 K

  • Hsin Wang
  • Shengqiang Bai
  • Lidong Chen
  • Alexander Cuenat
  • Giri Joshi
  • Holger Kleinke
  • Jan König
  • Hee Woong Lee
  • Joshua Martin
  • Min-Wook Oh
  • Wallace D. Porter
  • Zhifeng Ren
  • James Salvador
  • Jeff Sharp
  • Patrick Taylor
  • Alan J. Thompson
  • Y. C. Tseng


International transport property-measurement round-robins have been conducted by the thermoelectric annex under the International Energy Agency (IEA) Implementing Agreement on Advanced Materials for Transportation (AMT). Two previous round-robins used commercially available bismuth telluride as the test material, with the objectives of understanding measurement issues and developing standard testing procedures. This round-robin extended the measurement temperature range to 773 K. It was designed to meet the increasing demands for reliable transport data for thermoelectric materials used for power-generation applications. Eleven laboratories from six IEA-AMT member countries participated in the study. A half-Heusler (n-type) material prepared by GMZ Energy was selected for the round-robin. The measured transport properties had a narrower distribution of uncertainty than previous round-robin results. The study intentionally included multiple testing methods and instrument types. Over the full temperature range, the measurement discrepancies for the figure of merit, ZT, in this round-robin were ±11.5 to ±16.4% from the averages.


Thermoelectric figure of merit ZT round-robin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The paper describes work being conducted is part of the Implementing Agreement on Advanced Materials for Transportation under the auspices of the International Energy Agency. The authors would like to acknowledge financial support by Natural Resources Canada for the work conducted at CanmetMATERIALS, the International S&T Cooperation Program of China (2015DFA51050), and the home institution of each participating laboratory. HW would like to thank the assistant secretary for Energy Efficiency and Renewable Energy of the Department of Energy and the Propulsion Materials program under the Vehicle Technologies program, and Oak Ridge National Laboratory managed by UT-Battelle LLC under contract DE-AC 05000OR22725.


  1. 1.
    G.S. Nolas, G.A. Slack, and S.B. Schujman, Semicond. Semimet. 69, 255 (2000).CrossRefGoogle Scholar
  2. 2.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  3. 3.
    G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  4. 4.
    D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
  5. 5.
    C. Uher, Semicond. Semimet. 69, 139 (2000).CrossRefGoogle Scholar
  6. 6.
    J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A.J. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Phys. Rev. B 80, 115329 (2009).CrossRefGoogle Scholar
  7. 7.
    Z.H. Dughaish, Phys. B 322, 205 (2002).CrossRefGoogle Scholar
  8. 8.
    J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Pei, X. Shi, A.D. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder, Nature 473, 66 (2011).CrossRefGoogle Scholar
  10. 10.
    A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).CrossRefGoogle Scholar
  11. 11.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer, 2001).CrossRefGoogle Scholar
  12. 12.
    Q. Zhang, H.Z. Wang, Q. Zhang, W. Liu, B. Yu, H. Wang, D. Wang, G. Ni, G. Chen, and Z.F. Ren, NanoLetters 12, 2324 (2012).CrossRefGoogle Scholar
  13. 13.
    Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, G. Chen, and Z.F. Ren, JACS 134, 10031 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, and M.A. Kouacou, J. Phys. 10, 1013 (1998).Google Scholar
  15. 15.
    F.G. Aliev, N.B. Brandt, V.V. Moschalkov, V.V. Kozyrkov, R.V. Scolozdra, and A.I. Belogorokhov, Phys. B 75, 167 (1989).Google Scholar
  16. 16.
    S. Ogut and K.M. Rabe, Phys. Rev. B 51, 10443 (1995).CrossRefGoogle Scholar
  17. 17.
    W.E. Pickett and J.S. Moodera, Phys. Today 54, 39 (2001).CrossRefGoogle Scholar
  18. 18.
    C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).CrossRefGoogle Scholar
  19. 19.
    H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, J. Phys. 11, 1697 (1999).Google Scholar
  20. 20.
    S. Sportouch, P. Larson, M. Bastea, P. Brazis, J. Ireland, C.R. Kannenwurf, S.D. Mahanti, C. Uher, and M.G. Kanatzidis, in Thermoelectric Materials 1998?The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, ed. T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. (Materials Research Society Symposium Proceedings, Warrendale, PA, 1999), vol. 545, p. 421.Google Scholar
  21. 21.
    S. Bhattacharya, A.L. Pope, R.T. Littleton IV, T.M. Tritt, V. Ponnambalam, Y. Xia, and S.J. Poon, Appl. Phys. Lett. 77, 2476 (2000).CrossRefGoogle Scholar
  22. 22.
    Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, and T.M. Tritt, J. Appl. Phys. 88, 1952 (2000).CrossRefGoogle Scholar
  23. 23.
    Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).CrossRefGoogle Scholar
  24. 24.
    S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 2105 (2005).CrossRefGoogle Scholar
  25. 25.
    G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z.F. Ren, Adv. Energy Mater. 1, 643 (2011).CrossRefGoogle Scholar
  26. 26.
    X. Yan, G. Joshi, W.S. Liu, Y.C. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, NanoLetters 11, 556 (2011).CrossRefGoogle Scholar
  27. 27.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Fukano, T. Iida, K. Makino, M. Akasaka, Y. Oguni, and Y. Takanashi, in Thermoelectric Power Generation, ed. T. P. Hogan, J. Yang, R. Funahashi, and T. Tritt (MRS Proceedings, 2007), vol. 1044, pp. U06-13.Google Scholar
  29. 29.
    N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, and H. Inui, Acta Mater. 57, 5036 (2009).CrossRefGoogle Scholar
  30. 30.
    I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).CrossRefGoogle Scholar
  31. 31.
    R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. Part 2 39, L1127 (2000).CrossRefGoogle Scholar
  32. 32.
    A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).CrossRefGoogle Scholar
  33. 33.
    Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. Part 2 39, L531 (2000).CrossRefGoogle Scholar
  34. 34.
    A. Satake, H. Tanaka, T. Ohkawa, T. Fujii, and I. Terasaki, J. Appl. Phys. 96, 931 (2004).CrossRefGoogle Scholar
  35. 35.
    M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).CrossRefGoogle Scholar
  36. 36.
    I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 362 (2001).CrossRefGoogle Scholar
  37. 37.
    J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. König, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, J. Electron. Mater. 42, 1389 (2013).CrossRefGoogle Scholar
  38. 38.
    K. Barthholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).CrossRefGoogle Scholar
  39. 39.
    H. Wang, W.D. Porter, H. Böttner, J.D. König, L. Chen, S.Q. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J.W. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).CrossRefGoogle Scholar
  40. 40.
    H. Wang, W.D. Porter, H. Böttner, J.D. König, L. Chen, S.Q. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J.W. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 1073 (2013).CrossRefGoogle Scholar
  41. 41.
    J.R. Salvador, J. Yang, X. Shi, H. Wang, A.A. Wereszczak, H. Kong, and C. Uher, Phil. Mag. 89, 1517 (2009).CrossRefGoogle Scholar
  42. 42.
    M.S. Ei-Genk, H.H. Saber, J. Sakamoto, and T. Caillat, IEEE Proceedings of 22nd International Conference on Thermoelectrics (2003), pp. 417−420.Google Scholar
  43. 43.
    A. Scock, Proceedings of the Tenth Symposium on Space Nuclear Power and Propulsion, January 10?14, (Albuquerque, NM, 1993), vol. 271, p. 171.Google Scholar
  44. 44.
    G.L. Bennett, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 520.Google Scholar
  45. 45.
    M. Grabe, Measurement Uncertainties in Science and Technology (New York: Springer, 2005).Google Scholar
  46. 46.
    J. Martin, Meas. Sci. Technol. 24, 085601 (2013).CrossRefGoogle Scholar
  47. 47.
    ASTM Designation E 1461, 933 (1992).Google Scholar
  48. 48.
    International Organization for Standards, ISO 21748 (2010).Google Scholar
  49. 49.
    D. Salmon, G. Roebben, A. Lamberty, and R. Brandt, EUR Report, 21764 EN (2007).Google Scholar
  50. 50.
    E. Lenz, F. Elder, and P. Ziolkowski, Int. J. Thermophys. 34, 1975 (2013).CrossRefGoogle Scholar
  51. 51.
    J. Mackey, F. Dynys, and A. Sehirlioglu, Rev. Sci. Instrum. 85, 085119 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Hsin Wang
    • 1
  • Shengqiang Bai
    • 2
  • Lidong Chen
    • 2
  • Alexander Cuenat
    • 3
  • Giri Joshi
    • 4
    • 14
  • Holger Kleinke
    • 5
  • Jan König
    • 6
  • Hee Woong Lee
    • 7
  • Joshua Martin
    • 8
  • Min-Wook Oh
    • 7
  • Wallace D. Porter
    • 1
  • Zhifeng Ren
    • 9
  • James Salvador
    • 10
  • Jeff Sharp
    • 11
  • Patrick Taylor
    • 12
  • Alan J. Thompson
    • 11
  • Y. C. Tseng
    • 13
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  3. 3.NPLTeddington, LondonUK
  4. 4.GMZ EnergyWalthamUSA
  5. 5.University of WaterlooWaterlooCanada
  6. 6.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  7. 7.Korea Electrotechnology Research InstituteAnshanKorea
  8. 8.National Institute of Standards and TechnologyGaithersburgUSA
  9. 9.University of HoustonHoustonUSA
  10. 10.General Motors Global R&DWarrenUSA
  11. 11.Marlow IndustriesNashvilleUSA
  12. 12.Army Research LaboratoryAdelphiUSA
  13. 13.CanmetMATERIALSHamiltonCanada
  14. 14.Evident ThermoelectricTroyUSA

Personalised recommendations