Journal of Electronic Materials

, Volume 44, Issue 11, pp 4255–4268 | Cite as

Synthesis of Conductive Polyurethane/Graphite Composites for Electromagnetic Interference Shielding

Article

Abstract

Among various nanofillers for composite systems, carbon-based fillers such as graphite, carbon fibers, carbon black, carbon nanotubes, graphene, etc. are attracting great attention in both academia and industry for the advent of highly integrated electronic devices. The objective in fabricating such composite materials is to obtain distinct properties evolved from the synergistic effects of the component materials that may be exploited for various applications such as electronics and optical devices. In the present work, polyurethane/graphite composites have been synthesized with the aim of using them for electromagnetic shielding applications. The polyurethane/graphite composites were prepared through an in situ polymerization method in the presence of graphite nanoparticles. The prepared composites were characterized by scanning electron microscope, transmission electron microscope (TEM), and x-ray diffraction techniques. The shifting of the major peak of graphite nanoplatelets (GNPs) in prepared nanocomposites towards the left from 26.336° d-spacing = 3.381 Å to 25.374° d-spacing = 3.507 Å on a 2θ scale indicates the intercalation type of dispersion in the prepared nanocomposites. This was further validated with the TEM characterization. The introduction of GNPs in polyurethane (PU) during in situ polymerization creates an electrical network in the resulting composite, which therefore makes it highly conductive. The prepared nanocomposite showed an electrical network at 2.2 vol.% of the percolation threshold in DC condition and a similar percolation threshold was found at 100 Hz in AC conditions. The maximum conductivity found at 6.5 vol.% of filler loading was 0.01 S/cm. The resulting composites were evaluated for electromagnetic interference (EMI) shielding at different filler loadings. The prepared PU/GNPs composites were found to be highly effective with shielding effectiveness of 19.34 dB, and with electromagnetic interference shielding materials at 0.9–1 GHz.

Keywords

Composite materials polyurethane graphite nanoparticles electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Qin and H.X. Peng, Prog. Mater Sci. 58, 183 (2013).CrossRefGoogle Scholar
  2. 2.
    K. Allaer, I. De Baere, P. Lava, W. Van Paepegem, and J. Degrieck, Compos. Sci. Technol. 100, 34 (2014).CrossRefGoogle Scholar
  3. 3.
    P.M. Ajayan, L.S. Schadler, and P.V. Braun, Nanocomposites, Science and Technology (Weinhei: Wiley, 2003), p. 77.CrossRefGoogle Scholar
  4. 4.
    P. Panupakorn, E. Chaichana, P. Praserthdam, and B. Jongsomjit, J. Nanomater. 2013, 1 (2013).CrossRefGoogle Scholar
  5. 5.
    D.X. Yan, K. Dai, Z.D. Xiang, Z.M. Li, X. Ji, and W.Q. Zhang, J. Appl. Polym. Sci. 120, 3014 (2011).CrossRefGoogle Scholar
  6. 6.
    R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A. De Saja, and M.A. Lopez-Manchado, J. Mater. Chem. 18, 2221 (2008).CrossRefGoogle Scholar
  7. 7.
    G. Harikrishnan, C.I. Lindsay, M.A. Arunagirinathan, C.W. Macosko, and A.C.S. Appl, Mater. Interface 1, 1913 (2009).CrossRefGoogle Scholar
  8. 8.
    G. Harikrishnan, S.N. Singh, E. Kiesel, and C.W. Macosko, Polymer 51, 3349 (2010).CrossRefGoogle Scholar
  9. 9.
    M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, L. Jun, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, and I.A. Aksay, Chem. Mater. 19, 4396 (2007).CrossRefGoogle Scholar
  10. 10.
    S. Bhaviripudi, X. Jia, M.S. Dresselhaus, and J. Kong, Nano Lett. 10, 4128 (2010).CrossRefGoogle Scholar
  11. 11.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).CrossRefGoogle Scholar
  12. 12.
    D. Cho, S. Lee, G. Yang, H. Fukushima, and L.T. Drzal, Macromol. Mater. Eng. 290, 179 (2005).CrossRefGoogle Scholar
  13. 13.
    S. Kim and L.T. Drzal, J. Adhes. Sci. Technol. 23, 1623 (2009).CrossRefGoogle Scholar
  14. 14.
    T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, and L.C. Brinson, Nat. Nanotechnol. 3, 327 (2008).CrossRefGoogle Scholar
  15. 15.
    J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Mater. Sci. Eng. 74, 211 (2013).CrossRefGoogle Scholar
  16. 16.
    G.R. Yerawar, Der Pharm. Chem. 4, 1288 (2012).Google Scholar
  17. 17.
    S.B. Kondawar, M.D. Deshpande, and S.P. Agrawal, Int. J. Compos. Mater. 2, 32 (2012).Google Scholar
  18. 18.
    X. Jiang, Y. Bin, and M. Matsuo, Polymer 46, 7418 (2005).CrossRefGoogle Scholar
  19. 19.
    A.K.T. Lau, F. Hussain, and K. Lafdi, Nano-and Biocomposites (Boca Raton,FL: CRC Press, 2010), pp. 79–102.Google Scholar
  20. 20.
    H. Yu, Q. Ran, S. Wu, and J. Shen, Polym. Plast. Technol. Eng. 47, 619 (2008).CrossRefGoogle Scholar
  21. 21.
    G. Zheng, J. Wu, W. Wang, and C. Pan, Carbon 42, 2839 (2004).CrossRefGoogle Scholar
  22. 22.
    G. Chen, C. Wu, W. Weng, D. Wu, and W. Yan, Polymer 44, 1781 (2003).CrossRefGoogle Scholar
  23. 23.
    G. Chen, W. Weng, D. Wu, C. Wu, J. Lu, P. Wang, and X. Chen, Carbon 42, 753 (2004).CrossRefGoogle Scholar
  24. 24.
    A. Yasmin, J.J. Luo, and I.M. Daniel, Compos. Sci. Technol. 66, 1182 (2006).CrossRefGoogle Scholar
  25. 25.
    B. Chen, J.R.G. Evans, H.C. Greenwell, P. Boulet, P.V. Coveney, A.A. Bowden, and A. Whiting, Chem. Soc. Rev. 37, 568 (2008).CrossRefGoogle Scholar
  26. 26.
    K. Wakabayashi, C. Pierre, D.A. Dikin, R.S. Ruoff, T. Ramanathan, L.C. Brinson, and J.M. Torkelson, Macromolecules 41, 1905 (2008).CrossRefGoogle Scholar
  27. 27.
    G.H. Chen, D.J. Wu, W.G. Weng, and W.L. Yan, J. Appl. Polym. Sci. 82, 2506 (2001).CrossRefGoogle Scholar
  28. 28.
    G.H. Chen, D.J. Wu, W.G. Weng, B. He, and W.L. Yan, Polym. Int. 50, 980 (2001).CrossRefGoogle Scholar
  29. 29.
    D.R. Paul and L.M. Robeson, Polymer 49, 3187 (2008).CrossRefGoogle Scholar
  30. 30.
    I.M. Afanasov, V.A. Morozov, A.V. Kepman, S.G. Ionov, A.N. Seleznev, G. Van Tendeloo, and V.V. Avdeev, Carbon 47, 263 (2009).CrossRefGoogle Scholar
  31. 31.
    J. Li, M.L. Sham, J.K. Kim, and G. Marom, Compos. Sci. Technol. 67, 296 (2007).CrossRefGoogle Scholar
  32. 32.
    M.S. Sarto, A.G. D’Aloia, A. Tamburrano, and G. De Bellis, IEEE Trans. Electromagn. Compat. 54, 17 (2012).CrossRefGoogle Scholar
  33. 33.
    S.J. Wang, Y. Geng, Q. Zheng, and J.K. Kim, Carbon 48, 1815 (2010).CrossRefGoogle Scholar
  34. 34.
    X.S. Du, M. Xiao, and Y.Z. Meng, J. Polym. Sci. Part B 42, 1972 (2004).CrossRefGoogle Scholar
  35. 35.
    J. Li, P.C. Ma, C. W. Sze, T.C. Kai, B.Z. Tang, and J.K. Kim, 16th International Conference on Composite Materials ICCM16 (Kyoto, Japan, 2007), pp. 1–8Google Scholar
  36. 36.
    J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, Polymer 52, 5 (2011).CrossRefGoogle Scholar
  37. 37.
    G. Chen, W. Weng, D. Wu, and C. Wu, Eur. Polym. J. 39, 2329 (2003).CrossRefGoogle Scholar
  38. 38.
    K. Kalaitzidou, H. Fukushima, and L.T. Drzal, Compos. Sci. Technol. 67, 2045 (2007).CrossRefGoogle Scholar
  39. 39.
    J. Li and J.K. Kim, Compos. Sci. Technol. 67, 2114 (2007).CrossRefGoogle Scholar
  40. 40.
    C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, and S.R. Methuku, Comput. Electron. Agric. 63, 168 (2008).CrossRefGoogle Scholar
  41. 41.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).CrossRefGoogle Scholar
  42. 42.
    W. Zheng, X. Lu, and S.C. Wong, J. Appl. Polym. Sci. 91, 2781 (2004).CrossRefGoogle Scholar
  43. 43.
    J.W. Shen, X.M. Chen, and W.Y. Huang, J. Appl. Polym. Sci. 88, 1864 (2003).CrossRefGoogle Scholar
  44. 44.
    W. Weng, G. Chen, D. Wu, X. Chen, J. Lu, and P. Wang, J. Polym. Sci. Part B 42, 2844 (2004).CrossRefGoogle Scholar
  45. 45.
    M. Green, G. Marom, and J. Li, Macromol. Rapid Commun. 29, 1254 (2008).CrossRefGoogle Scholar
  46. 46.
    V. Panwar and R.M. Mehra, Eur. Polym. J. 44, 2367 (2008).CrossRefGoogle Scholar
  47. 47.
    F. He, S. Lau, H.L. Chan, and J. Fan, Adv. Mater. 21, 710 (2009).CrossRefGoogle Scholar
  48. 48.
    Y.F. Zhao, M. Xiao, S.J. Wang, X.C. Ge, and Y.Z. Meng, Compos. Sci. Technol. 67, 2528 (2007).CrossRefGoogle Scholar
  49. 49.
    X. Zhang, L. Shen, X. Xia, H. Wang, and Q. Du, Mater. Chem. Phys. 111, 368 (2008).CrossRefGoogle Scholar
  50. 50.
    C. Yu and B. Li, Polym. Compos. 29, 998 (2008).CrossRefGoogle Scholar
  51. 51.
    Z. Mo, H. Shi, H. Chen, G. Niu, Z. Zhao, and Y. Wu, J. Appl. Polym. Sci. 112, 573 (2009).CrossRefGoogle Scholar
  52. 52.
    H. Kim and C.W. Macosko, Macromolecules 41, 3317 (2008).CrossRefGoogle Scholar
  53. 53.
    D.D.L. Chung, Carbon 39, 279 (2001).CrossRefGoogle Scholar
  54. 54.
    S.A. Schelkunoff, Bell Syst. Tech. J. 13, 532 (1934).CrossRefGoogle Scholar
  55. 55.
    Z. Lai, Elementary Theory of Electromagnetic Shielding (Beijing: Atomic Energy Publishing Company, 1993), p. 23.Google Scholar
  56. 56.
    C.S. Zhang, Q.Q. Ni, S.Y. Fu, and K. Kurashiki, Compos. Sci. Technol. 67, 2973 (2007).CrossRefGoogle Scholar
  57. 57.
    T.K. Gupta, B.P. Singh, R.B. Mathur, and S.R. Dhakate, Nanoscale 6, 842 (2014).CrossRefGoogle Scholar
  58. 58.
    http://www.cvel.clemson.edu/emc/calculators/SE_Calculator/ index.html, EMI shielding calculator, Clemson University
  59. 59.
    P. Steffan, R. Vrba, and J. Drinovsky, 5th International Conference on Systems ICONS5 (French Alps, France, 2010), pp. 186–189Google Scholar
  60. 60.
    S.H. Nasiri, M.K.M. Farshi, and R. Faez, Ira. J. Electr. Electron. Eng. 8, 37 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia
  2. 2.Department of Chemical EngineeringThapar UniversityPatialaIndia
  3. 3.Amity Institute of Applied SciencesAmity UniversityNoidaIndia

Personalised recommendations