Advertisement

Journal of Electronic Materials

, Volume 45, Issue 3, pp 1251–1256 | Cite as

Synthesis and Thermoelectric Properties of p-Type Double-Filled Ce1−z YbzFe4−x Co x Sb12 Skutterudites

  • Gyeong-Seok Joo
  • Dong-Kil Shin
  • Il-Ho Kim
Article

p-Type Ce1−z YbzFe4−x Co x Sb12 skutterudites were prepared by encapsulated melting and hot pressing. The thermoelectric and transport properties were examined as a function of Ce/Yb double filling fraction and amount of Co substitution. The Hall coefficients and Seebeck coefficients were positive, implying that all specimens had p-type conduction. Carrier concentration decreased with increasing Co and Yb content. Electrical conductivity decreased and Seebeck coefficients increased with increasing Co content, because of charge compensation. In contrast, electrical conductivity increased and Seebeck coefficients decreased with increasing Yb filling fraction, because of the valence difference between Yb2 or 3+ and Ce3 or 4+. The lattice thermal conductivity of the double-filled skutterudites was lower than that of the single-filled skutterudites. The thermoelectric properties of the double-filled skutterudites were improved substantially; the maximum power factor, PF = 3.2 mW m−1 K−2, was achieved at 823 K for Ce0.25Yb0.75Fe3.5Co0.5Sb12 and the maximum dimensionless figure of merit ZT = 0.87 was achieved at 723 K for Ce0.75Yb0.25Fe3.5Co0.5Sb12.

Keywords

Thermoelectric skutterudite double filling charge compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer, Intermet. 19, 546 (2011).CrossRefGoogle Scholar
  2. 2.
    G.A. Slack, Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, 1995), p. 407.Google Scholar
  3. 3.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  4. 4.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  5. 5.
    B.C. Sales, Mater. Res. Soc. Bull. 23, 15 (1998).CrossRefGoogle Scholar
  6. 6.
    K.T. Wojciechowski, Mater Res. Bull. 37, 2023 (2002).CrossRefGoogle Scholar
  7. 7.
    D. Mandrus, A. Migliori, T.W. Darling, M.F. Hundley, E.J. Peterson, and J.D. Thompson, Phys. Rev. B 52, 4926 (1995).CrossRefGoogle Scholar
  8. 8.
    J.Y. Jung, K.H. Park, and I.H. Kim, J. Kor. Phys. Soc. 57, 773 (2010).CrossRefGoogle Scholar
  9. 9.
    W. Zhao, Q. Zhang, C. Dong, L. Liu, and X. Tang, J. Am. Chem. Soc. 131, 3713 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Graff, S. Zhu, T. Holgate, J. Peng, J. He, and T.M. Tritt, J. Electron. Mater. 40, 5 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, and P. Rogl, Acta Mater. 95, 201 (2015).CrossRefGoogle Scholar
  12. 12.
    B. Duan, P. Zhai, L. Liu, Q. Zhang, and X. Ruan, J. Mater. Sci.: Mater. Electron. 23, 1817 (2012).Google Scholar
  13. 13.
    Z. Qin, K.F. Cai, S. Chen, and Y. Du, J. Mater. Sci.: Mater. Electron. 24, 4142 (2013).Google Scholar
  14. 14.
    P. Wei, W.Y. Zhao, C.L. Dong, B. Ma, and Q.J. Zhang, J. Electron. Mater. 39, 1803 (2010).CrossRefGoogle Scholar
  15. 15.
    P.N. Alboni, X. Ji, J. He, N. Gothard, J. Hubbard, and T.M. Tritt, J. Electron. Mater. 36, 711 (2007).CrossRefGoogle Scholar
  16. 16.
    G. Tan, Y. Zheng, Y. Yan, and X. Tang, J. Alloys Compd. 584, 216 (2014).Google Scholar
  17. 17.
    K.H. Park, I.H. Kim, S.M. Choi, W.S. Seo, D.I. Cheong, and H. Kang, J. Electron. Mater. 42, 1377 (2013).CrossRefGoogle Scholar
  18. 18.
    D.H. Kim, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, APL Mater. 1, 032115 (2013).CrossRefGoogle Scholar
  19. 19.
    G. Tan, Y. Zheng, Y. Yan, and X. Tang, J. Alloys Compd. 584, 216 (2014).CrossRefGoogle Scholar
  20. 20.
    J. Yu, W.Y. Zhao, P. Wei, D.G. Tang, and Q.J. Zhang, J. Electron. Mater. 41, 1414 (2012).CrossRefGoogle Scholar
  21. 21.
    B. Bourgoin, D. Berardan, E. Alleno, C. Godart, O. Rouleau, and E. Leroy, J. Alloys Compd. 399, 47 (2005).CrossRefGoogle Scholar
  22. 22.
    D.R. Thompson, C. Liu, J. Yang, J.R. Salvador, D.B. Haddad, N.D. Ellison, R.A. Waldo, and J. Yang, Act. Mater. 92, 152 (2015).CrossRefGoogle Scholar
  23. 23.
    G. Rogl, D. Setman, E. Shafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Mater. 60, 2146 (2012).CrossRefGoogle Scholar
  24. 24.
    G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermet. 18, 57 (2010).CrossRefGoogle Scholar
  25. 25.
    G. Rogl, A. Grytsiv, P. Rogl, E. Royanian, E. Bauer, J. Horky, D. Setman, E. Schafler, and M. Zehetbauer, Acta Mater. 61, 6778 (2013).CrossRefGoogle Scholar
  26. 26.
    R.D. Shammon, Acta Cryst. A 32, 751 (1976).CrossRefGoogle Scholar
  27. 27.
    K. Yang, H. Cheng, H.H. Hng, J. Ma, J.L. Mi, X.B. Zhao, T.J. Zhu, and Y.B. Zhang, J. Alloys Compd. 467, 528 (2009).CrossRefGoogle Scholar
  28. 28.
    D. Bérardan, E. Alleno, C. Godart, O. Rouleau, and J. Rodriguez-Carvajal, Mater. Res. Bull. 40, 537 (2005).CrossRefGoogle Scholar
  29. 29.
    K.H. Park, S.I. Lee, W.S. Seo, and I.H. Kim, J. Kor. Phys. Soc. 64, 84 (2014).CrossRefGoogle Scholar
  30. 30.
    Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  31. 31.
    K.H. Park, S.I. Lee, W.S. Seo, D.K. Shin, and I.H. Kim, J. Kor. Phys. Soc. 64, 863 (2014).CrossRefGoogle Scholar
  32. 32.
    L. Zhou, P. Qiu, C. Uher, X. Shi, and L. Chen, Intermet. 32, 209 (2013).CrossRefGoogle Scholar
  33. 33.
    D.K. Shin and I.H. Kim, J. Kor. Phys. Soc. (Korea National University of Transportation, Chungju, Korea, to be submitted in 2015).Google Scholar
  34. 34.
    G.S. Joo, D.K. Shin, and I.H. Kim, J. Kor. Phys. Soc. (Korea National University of Transportation, Chungju, Korea, to be submitted in 2015).Google Scholar
  35. 35.
    G.J. Tan, S.Y. Wang, and X.F. Tang, J. Electron. Mater. 43, 1712 (2014).CrossRefGoogle Scholar
  36. 36.
    G.J. Tan, S.Y. Wang, Y.G. Yan, H. Li, and X.F. Tang, J. Electron. Mater. 41, 1147 (2012).CrossRefGoogle Scholar
  37. 37.
    Z. Chen, J. Yang, R. Liu, L. Xi, W. Zhang, and J. Yang, J. Electron. Mater. 42, 2492 (2013).CrossRefGoogle Scholar
  38. 38.
    X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  39. 39.
    K.H. Park, I.H. Kim, S.M. Choi, Y.S. Lim, W.S. Seo, and K.H. Kim, Jpn. J. Appl. Phys. 52, 10MB18 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations