Journal of Electronic Materials

, Volume 44, Issue 11, pp 4576–4588 | Cite as

Effect of Process and Service Conditions on TLP-Bonded Components with (Ag,Ni–)Sn Interlayer Combinations

  • Adrian Lis
  • Christian LeinenbachEmail author


Transient liquid phase (TLP) bonding of Cu substrates was conducted with interlayer systems with the stacking sequences Ag–Sn–Ag (samples A), Ni–Sn–Ni (samples B), and combined Ag–Sn–Ni (samples C). Because of the low mismatch of the coefficients of thermal expansion, characteristics of the TLP process and mechanical and thermal behavior of TLP-bonded samples could be investigated without interference from thermally induced residual stresses. An ideal process temperature of 300°C, at which the number of pores was lowest, was identified for all three layer systems. It was verified experimentally that formation of pores resulted from volume contraction during isothermal solidification of liquid Sn into intermetallic compounds (IMC). Temperature and interlayer-dependent growth characteristics of IMC accounted for the increasing size and number of defects with increasing process temperature and for different defect positions. The shear strength was measured to be 60.4 MPa, 27.4 MPa, and 40.7 MPa for samples A, B, and C, respectively, and ductile fracture features were observed for Ag3Sn IMC compared with the purely brittle behavior of Ni3Sn4 IMC. Excellent thermal stability for all three layer systems was confirmed during long-term annealing at 200°C for up to 1200 h, whereas at 300°C the microstructure was driven toward Ag–Sn solid solution, accompanied by Cu diffusion from the substrate along grain boundaries and Cu3Sn IMC formation (A), and toward Ni-rich IMC phases (B). Combined IMC interlayers (C) tended to be transformed into Ni-based IMC when held at 300°C; intermixing into (Ni,Cu)3Sn was accompanied by pore formation.


TLP bonding microstructure defect formation shear strength annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge ABB Corporate Research Switzerland for financing this study and, in particular, Dr. Slavo Kicin for his support.


  1. 1.
    B.J. Baliga, IEEE Electr. Device L. 10, 455 (1989).CrossRefGoogle Scholar
  2. 2.
    M. Willander, M. Friesel, Q.U. Wahab, and B. Straumal, J. Mater. Sci. 17, 1 (2006).Google Scholar
  3. 3.
    G.O. Cook and C.D. Sorensen, J. Mater. Sci. 46, 5305 (2011).CrossRefGoogle Scholar
  4. 4.
    R. Labie, W. Ruythooren, and J. Van Humbeeck, Intermetallics 15, 396 (2007).CrossRefGoogle Scholar
  5. 5.
    M.S. Park and R. Arroyave, Acta Mater. 58, 4900 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Schaefer, R.A. Fournelle, and J. Liang, J. Electron. Mater. 27, 1167 (1998).CrossRefGoogle Scholar
  7. 7.
    A.C.K. So, Y.C. Chan, and J.K.L. Lai, IEEE T. Compon. Pack B 20, 161 (1997).CrossRefGoogle Scholar
  8. 8.
    S. Bader, W. Gust, and H. Hieber, Acta Metall. Mater. 43, 329 (1995).Google Scholar
  9. 9.
    J. Gorlich, D. Baither, and G. Schmitz, Acta Mater. 58, 3187 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Gur and M. Bamberger, Acta Mater. 46, 4917 (1998).CrossRefGoogle Scholar
  11. 11.
    Y.W. Lin and K.L. Lin, J. Appl. Phys. 108, 063536 (2010).CrossRefGoogle Scholar
  12. 12.
    J.O. Suh, K.N. Tu, A.T. Wu, and N. Tamura, J. Appl. Phys. 109, 123513 (2011).CrossRefGoogle Scholar
  13. 13.
    M.L. Huang, F. Yang, N. Zhao, and Y.C. Yang, J. Alloy. Compd. 602, 281 (2014).CrossRefGoogle Scholar
  14. 14.
    J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 58, 3429 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Lis, M.S. Park, R. Arroyave, and C. Leinenbach, J. Alloy. Compd. 617, 763 (2014).CrossRefGoogle Scholar
  16. 16.
    Z. Marinkovic and V. Simic, Thin Solid Films 195, 127 (1991).CrossRefGoogle Scholar
  17. 17.
    S.K. Sen, A. Ghorai, A.K. Bandyopadhyay, and S. Sen, Thin Solid Films 155, 243 (1987).CrossRefGoogle Scholar
  18. 18.
    K. Suzuki, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, Mater. Trans. 46, 969 (2005).CrossRefGoogle Scholar
  19. 19.
    J.C. Lin, L.W. Huang, G.Y. Jang, and S.L. Lee, Thin Solid Films 410, 212 (2002).CrossRefGoogle Scholar
  20. 20.
    Y.M. Liu, Y.L. Chen, and T.H. Chuang, J. Electron. Mater. 29, 1047 (2000).CrossRefGoogle Scholar
  21. 21.
    Y.M. Liu and T.H. Chuang, J. Electron. Mater. 29, 405 (2000).CrossRefGoogle Scholar
  22. 22.
    M. Millares, B. Pieraggi, and E. Lelievre, Scripta Metall. Mater. 27, 1777 (1992).CrossRefGoogle Scholar
  23. 23.
    R. Roy and S.K. Sen, Thin Solid Films 197, 303 (1991).CrossRefGoogle Scholar
  24. 24.
    J.S. Kim, T. Yokozuka, and C.C. Lee, Mat. Sci. Eng. A-Struct. 458, 116 (2007).CrossRefGoogle Scholar
  25. 25.
    J.F. Li, P.A. Agyakwa, and C.M. Johnson, J. Electron. Mater. 43, 983 (2014).CrossRefGoogle Scholar
  26. 26.
    P.J. Wang, J.S. Kim, and C.C. Lee, in 12th IEEE International Symposium on Advanced Packaging Materials: Processes, Properties, and Interface (2007).. doi: 10.1109/ISAPM.2007.4419926
  27. 27.
    T. Takahashi, S. Komatsu, and T. Kono, Electrochem. Solid St. 12, H263 (2009).CrossRefGoogle Scholar
  28. 28.
    T.A. Tollefsen, A. Larsson, M.M.V. Taklo, A. Neels, X. Maeder, K. Hoydalsvik, D.W. Breiby, and K. Aasmundtveit, Metall. Mater. Trans. B 44, 406 (2013).CrossRefGoogle Scholar
  29. 29.
    S.H. Eo, D.S. Kim, H.J. Jeong, and J.H. Jang, Electron. Mater. Lett. 9, 787 (2013).CrossRefGoogle Scholar
  30. 30.
    B. Grummel, H.A. Mustain, Z.J. Shen, and A.R. Hefner, Proc. Int. Symp. Power (2011) 260.Google Scholar
  31. 31.
    N.S. Bosco and F.W. Zok, Acta Mater. 52, 2965 (2004).CrossRefGoogle Scholar
  32. 32.
    N.S. Bosco and F.W. Zok, Acta Mater. 53, 2019 (2005).CrossRefGoogle Scholar
  33. 33.
    B. Gollas, J.H. Albering, K. Schmut, V. Pointner, R. Herber, and J. Etzkorn, Intermetallics 16, 962 (2008).CrossRefGoogle Scholar
  34. 34.
    H.Y. Chuang, J.J. Yu, M.S. Kuo, H.M. Tong, and C.R. Kao, Scripta Mater. 66, 171 (2012).CrossRefGoogle Scholar
  35. 35.
    J.Y. Chang, T.C. Chang, T.H. Chuang, and C.Y. Lee, Dual-phase intermetallic interconnection structure and method of fabricating the same, US Patent, US8742600B2, 2014.Google Scholar
  36. 36.
    A. Lis, C. Kenel, and C. Leinenbach, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, submitted for publication (2015).Google Scholar
  37. 37.
    G.P. Vassilev, K.I. Lilova, and J.C. Gachon, Thermochim. Acta 447, 106 (2006).CrossRefGoogle Scholar
  38. 38.
    H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, and H. Ipser, Thermochim. Acta 459, 34 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and CorrosionDübendorfSwitzerland

Personalised recommendations