Advertisement

Journal of Electronic Materials

, Volume 45, Issue 3, pp 1240–1244 | Cite as

Thermoelectric Performance Enhancement of CeFe4Sb12 p-Type Skutterudite by Disorder on the Sb4 Rings Induced by Te Doping and Nanopores

  • Liangwei Fu
  • Junyou YangEmail author
  • Qinghui Jiang
  • Ye Xiao
  • Yubo Luo
  • Dan Zhang
  • Zhiwei Zhou
Article

Abstract

Skutterudites have attracted a lot of attention because of the intrinsic voids in their crystal structure. However, another important structural feature of p-type skutterudites seems to have been ignored, namely the nearly square four-membered antimony rings. To explore the influence of substitution of Te for Sb on the microstructure and thermoelectric properties, a series of p-type skutterudites with composition CeFe4Sb12−x Te x with x = 0, 0.1, and 0.2 have been synthesized. The electrical resistivity decreases while the Seebeck coefficient increases with Te doping. In addition, due to disturbance of the Sb4 rings and extra phonon scattering by nanopores, the lattice thermal conductivity is reduced. The thermoelectric figure of merit for the CeFe4Sb11.9Te0.1 compound reaches 0.76 at 773 K, being about 61% higher than that of the CeFe4Sb12 sample.

Keywords

p-Type skutterudites Sb4 rings nanopores thermoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Daravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  2. 2.
    S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, and S.W. Kin, Science 348, 109 (2015).CrossRefGoogle Scholar
  3. 3.
    G.J. Tan, F.Y. Shi, S.Q. Hao, H. Chi, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 137, 5100 (2015).CrossRefGoogle Scholar
  4. 4.
    Y. He, P. Lu, X. Shi, F.F. Xu, T.S. Zhang, G.J. Snyder, C. Uher, and L.D. Chen, Adv. Mater. 27, 3639 (2015).CrossRefGoogle Scholar
  5. 5.
    Y.L. Pei, H.J. Wu, D. Wu, F.S. Zheng, and J.Q. He, J. Am. Chem. Soc. 136, 13902 (2014).CrossRefGoogle Scholar
  6. 6.
    D.R. Thompson, C. Liu, J. Yang, J.R. Salvador, D.B. Haddad, N.D. Ellison, R.A. Waldo, and J.H. Yang, Acta Mater. 92, 152 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Shi, J. Yang, J.R. Slavador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  8. 8.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  9. 9.
    G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 57 (2010).CrossRefGoogle Scholar
  10. 10.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer, Intermetallics 19, 546 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M.B. Kerber, M. Zehetbauer, and S. Puchegger, Intermetallics 18, 2435 (2010).CrossRefGoogle Scholar
  12. 12.
    G. Rogl, A. Grytsiv, P. Heinrich, E. Bauer, P. Kumar, N. Peranio, O. Eibl, J. Hordy, M. Zehetbauer, and P. Rogl, Acta Mater. 91, 227 (2015).CrossRefGoogle Scholar
  13. 13.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Hochenhofer, R. Anbalagan, R.C. Mallik, and E. Schafler, Acta Mater. 76, 434 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Yang, R. Liu, Z. Chen, L. Xi, J.H. Yang, W. Zhang, and L.D. Chen, Appl. Phys. Lett. 101, 022101 (2012).CrossRefGoogle Scholar
  15. 15.
    G.J. Tan, Y. Zheng, Y.G. Yan, and X.F. Tang, J. Alloys Compd. 584, 216 (2014).CrossRefGoogle Scholar
  16. 16.
    B.X. Chen, J.H. Xu, C. Uher, D.T. Morelli, G.P. Meisner, J.P. Fleurial, T. Caillat, and A. Borshchevsky, Phys. Rev. B 55, 1476 (1997).CrossRefGoogle Scholar
  17. 17.
    P.F. Qiu, R.H. Liu, J. Yang, X. Shi, X.Y. Huang, W. Zhang, L.D. Chen, J.H. Yang, and D.J. Singh, J. Appl. Phys. 111, 023705 (2012).CrossRefGoogle Scholar
  18. 18.
    J.Y. Yang, Y.H. Chen, W. Zhu, J.Y. Peng, S.Q. Bao, X.A. Fan, and X.K. Duan, J. Solid State Chem. 179, 212 (2006).CrossRefGoogle Scholar
  19. 19.
    J.Y. Yang, Y.H. Chen, W. Zhu, S.Q. Bao, X.A. Fan, and X.K. Duan, J. Am. Ceram. Soc. 94, 277 (2011).CrossRefGoogle Scholar
  20. 20.
    P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).CrossRefGoogle Scholar
  21. 21.
    T. Dahal, Q. Jie, W.S. Liu, K. Dahal, C. Guo, Y.C. Lan, and Z.F. Ren, J. Alloys Compd. 623, 104 (2015).CrossRefGoogle Scholar
  22. 22.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).CrossRefGoogle Scholar
  23. 23.
    X.L. Su, H. Li, G.Y. Wang, H. Chi, X.Y. Zhou, X.F. Tang, Q.J. Zhang, and C. Uher, Chem. Mater. 23, 2948 (2011).CrossRefGoogle Scholar
  24. 24.
    L. Zhang, F.F. Duan, X.D. Li, X.L. Yan, W.T. Hu, L.M. Wang, Z.Y. Liu, Y.J. Tian, and B. Xu, J. Appl. Phys. 114, 083715 (2013).CrossRefGoogle Scholar
  25. 25.
    F.F. Duan, L. Zhang, J.Y. Dong, J. Sakamoto, B. Xu, X.D. Li, and Y.J. Tian, J. Alloys Compd. 639, 68 (2015).CrossRefGoogle Scholar
  26. 26.
    Z. Qin, K.F. Cai, S. Chen, and Y. Du, J. Mater. Sci. 24, 4142 (2013).Google Scholar
  27. 27.
    Q.Y. He, S.J. Hu, X.G. Tang, Y.C. Lan, J. Yang, X.W. Wang, Z.F. Ren, Q. Hao, and G. Chen, Appl. Phys. Lett. 93, 042108 (2008).CrossRefGoogle Scholar
  28. 28.
    C. Zhou, J. Sakamoto, and D. Morelli, J. Electron. Mater. 41, 1030 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Liangwei Fu
    • 1
  • Junyou Yang
    • 1
    Email author
  • Qinghui Jiang
    • 1
  • Ye Xiao
    • 1
  • Yubo Luo
    • 1
  • Dan Zhang
    • 1
  • Zhiwei Zhou
    • 1
  1. 1.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations