Journal of Electronic Materials

, Volume 45, Issue 3, pp 1234–1239 | Cite as

Electronic Transport and Thermoelectric Properties of p-Type Nd z Fe4−x Co x Sb12 Skutterudites

  • Dong-Kil Shin
  • Il-Ho KimEmail author


p-Type Nd z Fe4−x Co x Sb12 (z = 0.8, 0.9, 1.0 and x = 0, 0.5, 1.0) skutterudites were synthesized by encapsulated melting and annealing, and consolidated with hot pressing. The effects of Nd filling and Co substitution for Fe (charge compensation) on the electronic transport and the thermoelectric properties of the skutterudites were examined. A few secondary phases such as Sb and FeSb2 were formed together with the skutterudite phase, but the formation was suppressed with increasing Nd and Co contents. It was confirmed that Nd was filled in the void and Co was substituted for Fe in all specimens, because the lattice constant increased with increasing Nd content and decreased with increasing Co content. The electrical conductivity of all specimens decreased slightly with increasing temperature, showing degenerate semiconductor characteristics. The Hall and the Seebeck coefficients showed positive signs, indicating that the major carriers were holes (p-type conduction). The Seebeck coefficients were increased due to the decrease in the carrier concentration with increasing Nd and Co contents, while the electrical conductivity and the thermal conductivity were decreased. As a result, the dimensionless figure-of-merit, ZT, was improved by Nd filling and Co substitution, and a maximum ZT = 0.91 was obtained at 723 K for Nd0.9Fe3.5Co0.5Sb12.


Thermoelectric skutterudite void filling charge compensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Itoh and M. Yamada, J. Electron. Mater. 38, 925 (2009).CrossRefGoogle Scholar
  2. 2.
    S.M. Choi, K.H. Lee, C.H. Lim, and W.S. Seo, Energy Convers. Manag. 52, 335 (2011).CrossRefGoogle Scholar
  3. 3.
    C.A. Gould, N.Y.A. Shammas, S. Grainger, and I. Taylor, J. Mater. Sci. Eng. B 176, 316 (2011).CrossRefGoogle Scholar
  4. 4.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer, Intermetallics 19, 546 (2011).CrossRefGoogle Scholar
  5. 5.
    W.H. Chen, C.Y. Liao, C.I. Hung, and W.L. Huang, Energy 45, 874 (2012).CrossRefGoogle Scholar
  6. 6.
    G.A. Slack, Handbook of Thermoelectrics, Chap. 34, ed. D.M. Rowe (Boca Raton, FL: CRC, 1995).Google Scholar
  7. 7.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  8. 8.
    B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997).CrossRefGoogle Scholar
  9. 9.
    X. Shi, J.R. Salvador, J. Yang, and H. Wang, J. Electron. Mater. 38, 930 (2009).CrossRefGoogle Scholar
  10. 10.
    X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L.D. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  11. 11.
    J.S. Dyck, W. Chen, C. Uher, L.D. Chen, X. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).CrossRefGoogle Scholar
  12. 12.
    G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 394 (2010).CrossRefGoogle Scholar
  13. 13.
    W. Jeitschko and D. Braun, Acta Cryst. B 33, 3401 (1977).CrossRefGoogle Scholar
  14. 14.
    G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar
  15. 15.
    J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
  16. 16.
    X. Shi, J.O. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  17. 17.
    G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and O. Eibl, Acta Mater. 63, 30 (2014).CrossRefGoogle Scholar
  18. 18.
    X.F. Tang, H. Li, Q.J. Zhang, M. Niino, and T. Goto, J. Appl. Phys. 100, 123702 (2006).CrossRefGoogle Scholar
  19. 19.
    P.N. Alboni, X. Ji, J. He, N. Gothard, and T.M. Tritt, J. Appl. Phys. 103, 113707 (2008).CrossRefGoogle Scholar
  20. 20.
    G. Rogl, D. Setman, E. Shafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Gogl, E. Royanian, and E. Bauer, Acta Mater. 60, 2146 (2012).CrossRefGoogle Scholar
  21. 21.
    Z. Chen, J.O. Yang, R.H. Liu, L.L. Xi, W.Q. Zhang, and J. Yang, J. Electron. Mater. 42, 2492 (2013).CrossRefGoogle Scholar
  22. 22.
    K.H. Park, S.M. Choi, W.S. Seo, D.I. Cheong, H. Kang, and I.H. Kim, J. Electron. Mater. 42, 1377 (2013).CrossRefGoogle Scholar
  23. 23.
    K.H. Park, S.M. Choi, Y.S. Lim, W.S. Seo, K.H. Kim, and I.H. Kim, Jpn. J. Appl. Phys. 52, 1018 (2013).CrossRefGoogle Scholar
  24. 24.
    K.H. Park, S.I. Lee, W.S. Seo, and I.H. Kim, J. Korean Phys. Soc. 64, 84 (2014).CrossRefGoogle Scholar
  25. 25.
    P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).CrossRefGoogle Scholar
  26. 26.
    L. Zhang and J. Sakamoto, Mater. Chem. Phys. 138, 601 (2013).CrossRefGoogle Scholar
  27. 27.
    X.F. Tang, L.D. Chen, T. Goto, and T. Hirai, J. Jpn. Inst. Met. 63, 1412 (1999).Google Scholar
  28. 28.
    G.J. Tan, S.Y. Wang, Y.G. Yan, H. Li, and X.F. Tang, J. Electron. Mater. 41, 1147 (2012).CrossRefGoogle Scholar
  29. 29.
    Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  30. 30.
    C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986), p. 152.Google Scholar
  31. 31.
    J.Y. Cho, Z. Ye, M.M. Tessema, R.A. Waldo, J.R. Salvador, J. Yang, W. Cai, and H. Wang, Acta Mater. 60, 2104 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations