Journal of Electronic Materials

, Volume 45, Issue 1, pp 21–29 | Cite as

Quantifying the Rates of Sn Whisker Growth and Plastic Strain Relaxation Using Thermally-Induced Stress

Article

Abstract

Whiskers and hillocks that grow out of Sn-based coatings are a critical reliability issue in Pb-free electronics. Although their growth is widely regarded as a stress-relaxation mechanism, quantitative understanding of the relationship between the stress, growth kinetics, and strain relaxation is still lacking. In this work, the well-controlled strain induced by thermal-expansion mismatch was used to study the whiskering behavior of electroplated Sn films. Stress was quantified by monitoring wafer-curvature and the density of whiskers and hillocks was measured simultaneously by use of optical microscopy. Evolution of the volume of individual features was also measured by scanning electron microscopy after different periods of heating. The measurements were used to develop a model for temperature-dependent and stress-dependent growth kinetics of whiskers and hillocks and to determine the amount of strain relaxation which occurs as a result of their formation.

Keywords

Tin whiskering thermal cycling stress relaxation grain boundary diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NHTSA–NASA Study of Unintended Acceleration in Toyota Vehicle, in: National Highway Traffic Safety Administration (NHTSA), 2011, p. 121.Google Scholar
  2. 2.
    NASA. Multiple examples of whisker-induced failures are documented on the NASA website. Available: http://nepp. nasa.gov/whisker/.
  3. 3.
    Directive 2002/95/Ec of the European Parliament and of the council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment., E. Union, 2003.Google Scholar
  4. 4.
    G.T. Galyon and I.E.E.E. Trans, Electron. Packag. Manuf. 28, 94 (2005).CrossRefGoogle Scholar
  5. 5.
    E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Prog. Surf. Sci. 88, 103 (2013).CrossRefGoogle Scholar
  6. 6.
    R.M. Fisher, L S. Darken, and K.G. Carroll, Acta Metall. 2, 368 (1954).Google Scholar
  7. 7.
    C.H. Pitt and R.G. Henning, J. Appl. Phys. 35, 459 (1964).CrossRefGoogle Scholar
  8. 8.
    K.N. Tu, Phys. Rev. B 49, 2030 (1994).CrossRefGoogle Scholar
  9. 9.
    X. Chen, Z. Yun, F. Chonglun, and J.A. Abys, IEEE Trans. Electron. Packag. Manuf. 28, 31 (2005).CrossRefGoogle Scholar
  10. 10.
    J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, R.L. Shook, and F.A. Baiocchi, IEEE Trans. Electron. Packag. Manuf. 30, 23 (2007).CrossRefGoogle Scholar
  11. 11.
    M.A. Dudek and N. Chawla, Acta Mater. 57, 4588 (2009).CrossRefGoogle Scholar
  12. 12.
    I. Boguslavsky and P. Bush, Proceedings of APEX Conference (Anaheim, CA, 2003), pp. S12.14.1–S12.14.10.Google Scholar
  13. 13.
    S. Sakuyama and M. Kutami, Fujitsu Sci. Tech. J 41, 217 (2005).Google Scholar
  14. 14.
    P.T. Vianco and J.A. Rejent, J. Electron. Mater. 38, 1815 (2009).CrossRefGoogle Scholar
  15. 15.
    P.T. Vianco and J.A. Rejent, J. Electron. Mater. 38, 1826 (2009).CrossRefGoogle Scholar
  16. 16.
    S.-K. Lin, Y. Yorikado, J. Jiang, K.-S. Kim, K. Suganuma, S.-W. Chen, M. Tsujimoto, and I. Yanada, J. Mater. Res. 22, 1975 (2007).CrossRefGoogle Scholar
  17. 17.
    T. Shibutani, Q. Yu, M. Shiratori, and M.G. Pecht, Microelectron. Reliab. 48, 1033 (2008).CrossRefGoogle Scholar
  18. 18.
    F. Yang and Y. Li, J. Appl. Phys. 104, 113512 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Mizuguchi, Y. Murakami, S. Tomiya, T. Asai, T. Kiga, and K. Suganuma, J. Electron. Mater. 41, 1859 (2012).CrossRefGoogle Scholar
  20. 20.
    J.J. Williams, N.C. Chapman, and N. Chawla, J. Electron. Mater. 42, 224 (2013).CrossRefGoogle Scholar
  21. 21.
    W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).CrossRefGoogle Scholar
  22. 22.
    M.J. Bozack, E.R. Crandall, C.L. Rodekohr, R.N. Dean, G.T. Flowers, and J.C. Suhling, IEEE Trans. Electron. Packag. Manuf 33, 198 (2010).CrossRefGoogle Scholar
  23. 23.
    K.S. Kim, C.H. Yu, and J.M. Yang, Microelectron. Reliab. 46, 1080 (2006).CrossRefGoogle Scholar
  24. 24.
    Y. Nakadaira, S. Jeong, J. Shim, J. Seo, S. Min, T. Cho, S. Kang, and S. Oh, Microelectron. Reliab. 48, 83 (2008).CrossRefGoogle Scholar
  25. 25.
    K. Suganuma, A. Baated, K.-S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, and T. Yamada, Acta Mater. 59, 7255 (2011).CrossRefGoogle Scholar
  26. 26.
    H.L. Reynolds, J.W. Osenbach, G. Henshall, R.D. Parker, and S. Peng, IEEE Trans. Electron. Packag. Manuf. 33, 1 (2010).CrossRefGoogle Scholar
  27. 27.
    H.L. Reynolds, J.W. Osenbach, G. Henshall, R.D. Parker, and S. Peng, IEEE Trans. Electron. Packag. Manuf. 33, 16 (2010).CrossRefGoogle Scholar
  28. 28.
    K.N. Tu, Acta Metall. 21, 347 (1973).CrossRefGoogle Scholar
  29. 29.
    B.Z. Lee and D.N. Lee, Acta Mater. 46, 3701 (1998).CrossRefGoogle Scholar
  30. 30.
    Z. Wan, A. Egli, F. Schwager, N. Brown, and I.E.E.E. Trans, IEEE Trans. Electron. Packag. Manuf. 28, 85 (2005).CrossRefGoogle Scholar
  31. 31.
    E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).CrossRefGoogle Scholar
  32. 32.
    M. Sobiech, U. Welzel, R. Schuster, E.J. Mittemeijer, W. Hugel, A. Seekamp, and V. Muller, Proceedings of 57th Electronic Components and Technology Conference (Reno, Nevada, USA, 2007), pp. 192–197.Google Scholar
  33. 33.
    K. Murakami, M. Okano, M. Hino, M. Takamizawa, and K. Nakai, Mater. Trans. 51, 143 (2010).CrossRefGoogle Scholar
  34. 34.
    C.-H. Su, H. Chen, H.-Y. Lee, and A.T. Wu, Appl. Phys. Lett. 99, 131906 (2011).CrossRefGoogle Scholar
  35. 35.
    W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. MacDowell, Y.Y. Bong, and L. Nguyen, Acta Mater. 51, 6253 (2003).CrossRefGoogle Scholar
  36. 36.
    E. Buchovecky, N. Jadhav, A. Bower, and E. Chason, J. Electron. Mater. 38, 2676 (2009).CrossRefGoogle Scholar
  37. 37.
    M. Sobiech, M. Wohlschlögel, U. Welzel, E.J. Mittemeijer, W. Hügel, A. Seekamp, W. Liu, and G.E. Ice, Appl. Phys. Lett. 94, 221901 (2009).CrossRefGoogle Scholar
  38. 38.
    M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hügel, and A. Seekamp, Appl. Phys. Lett. 93, 011906 (2008).CrossRefGoogle Scholar
  39. 39.
    J.W. Shin and E. Chason, J. Mater. Res. 24, 1522 (2009).CrossRefGoogle Scholar
  40. 40.
    K.S. Kumar, L. Reinbold, A.F. Bower, and E. Chason, J. Mater. Res. 23, 2916 (2008).CrossRefGoogle Scholar
  41. 41.
    K.N. Tu and J.C.M. Li, Mater. Sci. Eng. A 409, 131 (2005).CrossRefGoogle Scholar
  42. 42.
    N. Jadhav, J. Wasserman, F. Pei, and E. Chason, J. Electron. Mater. 41, 588 (2012).CrossRefGoogle Scholar
  43. 43.
    N. Jadhav, M. Williams, F. Pei, G. Stafford, and E. Chason, J. Electron. Mater. 42, 312 (2013).CrossRefGoogle Scholar
  44. 44.
    J. Smetana, IEEE Trans. Electron. Packag. Manuf. 30, 11 (2007).CrossRefGoogle Scholar
  45. 45.
    B. Hutchinson, J. Oliver, M. Nylén, and J. Hagström, Mater. Sci. Forum 467–470, 465 (2004).CrossRefGoogle Scholar
  46. 46.
    E.J. Buchovecky, N.N. Du, and A.F. Bower, Appl. Phys. Lett. 94, 191904 (2009).CrossRefGoogle Scholar
  47. 47.
    P. Sarobol, J.E. Blendell, and C.A. Handwerker, Acta Mater. 61, 1991 (2013).CrossRefGoogle Scholar
  48. 48.
    P. Sarobol, W.-H. Chen, A.E. Pedigo, P. Su, J.E. Blendell, and C.A. Handwerker, J. Mater. Res. 28, 747 (2013).CrossRefGoogle Scholar
  49. 49.
    E. Chason, Thin Solid Films 526, 1 (2012).CrossRefGoogle Scholar
  50. 50.
    L.B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, 1st ed. (Cambridge: Cambridge University Press, 2009), pp. 86–93.Google Scholar
  51. 51.
    F. Pei and E. Chason, J. Electron. Mater. 43, 80 (2014).CrossRefGoogle Scholar
  52. 52.
    F. Pei, N. Jadhav, and E. Chason, Appl. Phys. Lett. 100, 221902 (2012).CrossRefGoogle Scholar
  53. 53.
    F. Pei, Ph.D. Thesis, School of Engineering, Brown University (2015).Google Scholar
  54. 54.
    W. Lange and D. Bergner, Phys. Status Solidi (b) 2, 1410 (1962).CrossRefGoogle Scholar
  55. 55.
    P. Singh and M. Ohring, J. Appl. Phys. 56, 899 (1984).CrossRefGoogle Scholar
  56. 56.
    Z. Guo, Y.-H. Pao, and H. Conrad, J. Electron. Packag. 117, 100 (1995).CrossRefGoogle Scholar
  57. 57.
    F. Pei, C.L. Briant, H. Kesari, A.F. Bower, and E. Chason, Scripta Mater. 93, 16 (2014).CrossRefGoogle Scholar
  58. 58.
    E. Buchovecky, Ph.D. Thesis, School of Engineering, Brown University, 2010.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations