Advertisement

Journal of Electronic Materials

, Volume 45, Issue 3, pp 1227–1233 | Cite as

Thermoelectric Properties of p-Type La1−z Pr z Fe4−x Co x Sb12 Skutterudites

  • Kwon-Min Song
  • Dong-Kil Shin
  • Il-Ho Kim
Article

Abstract

p-Type La1−z Pr z Fe4−x Co x Sb12 skutterudites were prepared by encapsulated melting, quenching, annealing, and hot pressing. The skutterudite phase was successfully synthesized but small amounts of FeSb2 and (La,Pr)Sb2 secondary phases were also observed, especially for the Co-substituted specimens. Carrier concentration decreased with increasing Pr and Co content. Electrical conductivity decreased with increasing temperature, showing that all specimens were heavily-doped semiconductors. Electrical conductivity also decreased with increasing Pr and Co content. The Hall and the Seebeck coefficients revealed that all specimens had p-type characteristics. Seebeck coefficients increased with increasing temperature, with maximum values occurring between 723 and 823 K. The maximum power factor (PF) was 3.1 m Wm−1 K−2, at 823 K and 723 K for La0.75Pr0.25Fe4Sb12 and La0.75Pr0.25 Fe3.75Co0.25Sb12, respectively. Thermal conductivity decreased with increasing Pr and Co content, and increased because of bipolar conduction at temperatures above 723 K. For a fixed Co content, lattice thermal conductivity decreased with increasing Pr content; this may be attributed to a larger contribution from Pr than from La to the decrease in lattice thermal conductivity. The dimensionless figure of merit (ZT) had maximum values of 0.83 at 823 K for La0.75Pr0.25Fe4Sb12 and 0.81 at 723 K for La0.75Pr0.25Fe3.75Co0.25Sb12.

Keywords

Thermoelectric skutterudite double filling charge compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  2. 2.
    B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997).CrossRefGoogle Scholar
  3. 3.
    G.A. Slack, Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 407.Google Scholar
  4. 4.
    G.S. Nolas, G.A. Slack, and S.B. Schujman, Semiconductors and Semimetals, vol. 69, ed. T. M. Tritt (Academic Press, San Diego, 2001), p. 255.Google Scholar
  5. 5.
    Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006).CrossRefGoogle Scholar
  6. 6.
    Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J.H. Yang, Appl. Phys. Lett. 95, 042101 (2009).CrossRefGoogle Scholar
  7. 7.
    L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hira, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Muller, J. Appl. Phys. 95, 4852 (2004).CrossRefGoogle Scholar
  9. 9.
    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).CrossRefGoogle Scholar
  10. 10.
    D.T. Morelli, G.P. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
  11. 11.
    G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  12. 12.
    J.G.A. Lamberton, S. Bhattacharya, R.T. Littleton IV, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas, Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
  13. 13.
    V.L. Kuznetsov, L.A. Kuznetsova, and D.M. Rowe, J. Phys.: Condens. Matter 15, 5035 (2003).Google Scholar
  14. 14.
    W. Jeitschko and D.J. Brown, Acta Crystallogr. B 33, 3401 (1977).CrossRefGoogle Scholar
  15. 15.
    D.J. Singh and M.H. Du, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 075115 (2010).CrossRefGoogle Scholar
  16. 16.
    M.V. Keepens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Day, R. Coldea, B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).CrossRefGoogle Scholar
  17. 17.
    L. Zhang, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehebauer, J. Phys. D Appl. Phys. 42, 225405 (2009).CrossRefGoogle Scholar
  18. 18.
    J. Yang, W. Zhang, Z.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
  19. 19.
    X.F. Tang, Q. Zhang, L.D. Chen, T. Goto, and T. Hirai, J. Appl. Phys. 97, 093712 (2005).CrossRefGoogle Scholar
  20. 20.
    X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Wang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  21. 21.
    X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  22. 22.
    W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).CrossRefGoogle Scholar
  23. 23.
    G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar
  24. 24.
    Y. Tang, S. Chen, and G.J. Snyder, J. Mater. 1, 75 (2015).Google Scholar
  25. 25.
    G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar
  26. 26.
    Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  27. 27.
    C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986), p. 152.Google Scholar
  28. 28.
    K.H. Park, I.H. Kim, S.M. Choi, Y.S. Lim, W.S. Seo, and K.H. Kim, Jpn. J. Appl. Phys. 52, 10MB18 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations