Journal of Electronic Materials

, Volume 44, Issue 10, pp 3603–3611 | Cite as

Molybdenum, Tungsten, and Aluminium Substitution for Enhancement of the Thermoelectric Performance of Higher Manganese Silicides

  • D. Y. Nhi Truong
  • David Berthebaud
  • Franck Gascoin
  • Holger Kleinke
Article

Abstract

An easy and efficient process involving ball milling under soft conditions and spark plasma sintering was used to synthesize higher manganese silicide (HMS)-based compounds, for example MnSi1.75Ge0.02, with different molybdenum, tungsten, and aluminium substitution. The x-ray diffraction patterns of the samples after sintering showed the main phase to be HMS with the presence of some side products. Molybdenum substitution enlarges the unit cells more than tungsten substitution, owing to its greater solubility in the HMS structure, whereas substitution with aluminium did not substantially alter the cell parameters. The electrical resistivity of HMS-based compounds was reduced by <10% by this substitution, because of increased carrier concentrations. Changes of the Seebeck coefficient were insignificant after molybdenum and aluminium substitution whereas tungsten substitution slightly reduced the thermopower of the base material by approximately 8% over the whole temperature range; this was ascribed to reduced carrier mobility as a result of enhanced scattering. Substitution with any combination of two of these elements resulted in no crucial modification of the electrical properties of the base material. Large decreases of lattice thermal conductivity were observed, because of enhanced phonon scattering, with the highest reduction up to 25% for molybdenum substitution; this resulted in a 20% decrease of total thermal conductivity, which contributed to improvement of the figure of merit ZT of the HMS-based materials. The maximum ZT value was approximately 0.40 for the material with 2 at.% molybdenum substitution at the Mn sites.

Keywords

Manganese silicon semiconductor thermoelectric physical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2015_3854_MOESM1_ESM.docx (166 kb)
Supplementary material 1 (DOCX 165 kb)

References

  1. 1.
    H. Nowotny, Chemistry of Extended Defects in Non-Metallic Solids, ed. L. Eyring and M.O’Keeffe (Amsterdam: North Holland, 1970), p. 223.Google Scholar
  2. 2.
    J.M. Higgins, A.L. Schmitt, I.A. Guzei, and S. Jin, J. Am. Chem. Soc. 130, 16086 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. Miyazaki, D. Igarashi, K. Hayashi, T. Kajitani, and K. Yubuta, Phys. Rev. B 78, 214104 (2008).CrossRefGoogle Scholar
  4. 4.
    A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2010).CrossRefGoogle Scholar
  5. 5.
    I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).CrossRefGoogle Scholar
  6. 6.
    I. Aoyama, H. Kaibe, L. Rauscher, T. Kanda, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 4275 (2005).CrossRefGoogle Scholar
  7. 7.
    W. Luo, H. Li, F. Fu, W. Hao, and X. Tang, J. Electron. Mater. 40, 1233 (2011).CrossRefGoogle Scholar
  8. 8.
    X. Chen, A. Weathers, D. Salta, L. Zhang, J. Zhou, J.B. Goodenough, and L. Shi, J. Appl. Phys. 114, 173705 (2013).CrossRefGoogle Scholar
  9. 9.
    G. Liu, Q. Lu, X. Zhang, J. Zhang, and Y. Shi, J. Electron. Mater. 41, 1450 (2012).CrossRefGoogle Scholar
  10. 10.
    V. Ponnambalam and D.T. Morelli, J. Electron. Mater. 41, 1389 (2012).CrossRefGoogle Scholar
  11. 11.
    L.D. Ivanova and A.A. Baikov, J. Thermoelectr. 3, 60 (2009).Google Scholar
  12. 12.
    D.-K. Shin, S.-C. Ur, K.-W. Jang, and I.-H. Kim, J. Electron. Mater. 43, 2104 (2014).CrossRefGoogle Scholar
  13. 13.
    D.-K. Shin, S.-W. You, and I.-H. Kim, J. Korean Phys. Soc. 65, 1499 (2014).CrossRefGoogle Scholar
  14. 14.
    V. Ponnambalam, D.T. Morelli, S. Bhattacharya, and T.M. Tritt, J. Alloys Compd. 580, 598 (2013).CrossRefGoogle Scholar
  15. 15.
    A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 38, 1072 (2009).CrossRefGoogle Scholar
  16. 16.
    A.J. Zhou, T.J. Zhu, H.L. Ni, Q. Zhang, and X.B. Zhao, J.␣Alloys Compd. 455, 255 (2008).CrossRefGoogle Scholar
  17. 17.
    D.Y.N. Truong, H. Kleinke, and F. Gascoin, Dalt. Trans. 43, 15092 (2014).CrossRefGoogle Scholar
  18. 18.
    P. Norouzzadeh, Z. Zamanipour, J.S. Krasinski, and D. Vashaee, J. Appl. Phys. 112, 124308 (2012).CrossRefGoogle Scholar
  19. 19.
    Z. Zamanipour, X. Shi, M. Mozafari, J.S. Krasinski, L. Tayebi, and D. Vashaee, Ceram. Int. 39, 2353 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Rodriguez-Carvajal, in Satellite Meeting on Powder Diffraction of the XV Congress of IUCr (Toulouse, 1990).Google Scholar
  21. 21.
    W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).CrossRefGoogle Scholar
  22. 22.
    X. Shi, Z. Zamanipour, K.F. Ede, J.S. Krasinski, and D. Vashaee, in Green Technologies Conference, 2012 IEEE (IEEE, 2012), 1.Google Scholar
  23. 23.
    C. Vining, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (New York: CRC Press, 1995), p. 277.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • D. Y. Nhi Truong
    • 1
    • 2
  • David Berthebaud
    • 1
  • Franck Gascoin
    • 1
  • Holger Kleinke
    • 2
  1. 1.Laboratoire CRISMAT UMR 6508 CNRS ENSICAENCaen Cedex 04France
  2. 2.Department of Chemistry and Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada

Personalised recommendations