Journal of Electronic Materials

, Volume 44, Issue 9, pp 3144–3150 | Cite as

Latest Developments in Long-Wavelength and Very-Long-Wavelength Infrared Detection with p-on-n HgCdTe

  • N. Baier
  • C. Cervera
  • O. Gravrand
  • L. Mollard
  • C. Lobre
  • G. Destefanis
  • G. Bourgeois
  • J.P. Zanatta
  • O. Boulade
  • V. Moreau
Article

Abstract

We report recent developments at Commissariat à l’Energie Atomique-Laboratoire d’Electronique des Technologies de l’Information Infrared Laboratory on the processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) operating in the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR) spectral bands. The active layers in these FPAs were grown by liquid phase epitaxy (LPE) on a lattice-matched CdZnTe substrate. This technological process results in lower dark current and lower serial resistance than for n-on-p vacancy-doped architecture and thus is better adapted for lower flux detection or higher operating temperature. This architecture was evaluated for space applications in the LWIR and VLWIR spectral bands with cutoff wavelengths from 10 to 17 μm at 78 K. Innovations have been introduced to the technological process to form a heterojunction by use of an LPE growth technique. The initial objective was to reduce the dark current at low temperatures, by reducing the transition temperature from diffusion-limited to depletion-limited dark current. Another advantage is that the wider bandgap obtained in the vicinity of the junction ensures less sensitivity to the defects present at the interface between MCT and passivation layers. Electro-optical characterization of p-on-n photodiodes was performed on quarter video graphics array format FPAs with 25 and 30 μm pixel pitches. The results revealed excellent operabilities in current and responsivity, with low dispersion, and noise limited by current shot noise. Studies performed on the dark current show that dark current densities at 78 K are consistent with the heuristic prediction law “Rule 07”. Below this temperature, dark current varies as a pure diffusion current for a variety of devices from different manufacturers, introducing a temperature range limitation in the description of the “Rule 07” law.

Key words

IR sensors HgCdTe dark current IR space applications  very-long-wavelength IR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mollard, G. Destefanis, J. Rothman, N. Baier, P. Ballet, and J.W. Bourgeois, et al., Proc. SPIE 6940, 69400F (2008).CrossRefGoogle Scholar
  2. 2.
    L. Mollard, G. Destefanis, J. Rothman, N. Baier, P. Bisotto, and P. Ballet, et al., J. Electron. Mater. 38, 1805 (2009).CrossRefGoogle Scholar
  3. 3.
    L.O. Bubulac, J. Cryst. Growth 86, 723 (1988).CrossRefGoogle Scholar
  4. 4.
    L.O. Bubulac, D.S. Lo, W.E. Tennant, D.D. Edwall, J.C. Chen, J. Ratusnik, J.C. Robinson, and G. Bostrup, Appl. Phys. Lett. 50, 1586 (1987).CrossRefGoogle Scholar
  5. 5.
    A. Manissadjian, Y. Reibel, L. Rubaldo, L. Mollard, and D. Brelier, Proc. SPIE 8353, 835334 (2012).CrossRefGoogle Scholar
  6. 6.
    O. Gravrand, O. Boulade, V. Moreau, E. Sanson, and G. Destefanis, J. Electron. Mater. 41, 2686 (2012).CrossRefGoogle Scholar
  7. 7.
    N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.-P. Zanatta, G. Destefanis, O. Boulade, V. Moreau, F. Pinsard, L. Tauziède, A. Bardoux, L. Rubaldo, A. Kerlain, and J.-C. Peyrar, Proc. SPIE 8704, 87042P (2013).CrossRefGoogle Scholar
  8. 8.
    W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).CrossRefGoogle Scholar
  9. 9.
    W.E. Tennant, J. Electron. Mater. 37, 1030 (2010).CrossRefGoogle Scholar
  10. 10.
    N. Baier, L. Mollard, J. Rothman, G. Destefanis, P. Ballet, and J.P. Bourgeois, et al., Proc. SPIE 7298, 729823 (2009).CrossRefGoogle Scholar
  11. 11.
    L. Mollard, G. Destefanis, J.P. Bourgeois, A. Ferron, N. Baier, and O. Gravrand, et al., J. Electron. Mater. 40, 1830 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Rothman, J. Electron. Mater. 35, 1174 (2006).CrossRefGoogle Scholar
  13. 13.
    O. Gravrand, E. Borniol, S. Bisotto, L. Mollard, and G. Destefanis, J. Electron. Mater. 36, 981 (2007). doi:10.1007/s11664-007-0151-3.CrossRefGoogle Scholar
  14. 14.
    O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. DeBorniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009). doi:10.1007/s11664-009-0795-2.CrossRefGoogle Scholar
  15. 15.
    N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.P. Zanatta, and G. Destefanis, et al., Proc. SPIE 8353, 83532N (2012).CrossRefGoogle Scholar
  16. 16.
    L. Puig, K.G. Isaak, M. Linder, I. Escudero, D. Martin, P.E. Crouzet, L. Gaspar Venancio, and A. Zuccaro Marchi, Proc. SPIE 8442, 844206 (2012).CrossRefGoogle Scholar
  17. 17.
    C. McMurtry, D. Lee, J. Beletic, C.A. Chen, R.T. Demers, M. Dorn, D. Edwall, C. Bacon Fazar, W.J. Forrest, F. Liu, A.K. Mainzer, J.L. Pipher, and A. Yulius, Opt. Eng. 52, 091804-1 (2013).CrossRefGoogle Scholar
  18. 18.
    C. Fulk, W. Radford, D. Buell, J. Bangs, and K. Rybnicek, J.␣Electron. Mater. (2015). doi:10.1007/s11664-015-3740-6.
  19. 19.
    G.L. Hansen, J. Appl. Phys. 53, 7099 (1982).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • N. Baier
    • 1
  • C. Cervera
    • 1
  • O. Gravrand
    • 1
  • L. Mollard
    • 1
  • C. Lobre
    • 1
  • G. Destefanis
    • 1
  • G. Bourgeois
    • 1
  • J.P. Zanatta
    • 1
  • O. Boulade
    • 2
  • V. Moreau
    • 2
  1. 1.CEA-LETIMINATECGrenobleFrance
  2. 2.CEA-IRFUGif-sur-YvetteFrance

Personalised recommendations