Journal of Electronic Materials

, Volume 44, Issue 10, pp 3710–3723 | Cite as

Electroactive Phase Induced Bi4Ti3O12–Poly(Vinylidene Difluoride) Composites with Improved Dielectric Properties

  • Sumit Bhardwaj
  • Joginder Paul
  • Subhash Chand
  • K.K. Raina
  • Ravi Kumar
Article

Abstract

Lead-free ceramic–polymer composite films containing Bi4Ti3O12 (BIT) nanocrystals as the active phase and poly(vinylidene difluoride) as the passive matrix were synthesized by spin coating. The films’ structural, morphological, and dielectric properties were systemically investigated by varying the weight fraction of BIT. Formation of electroactive β and γ phases were strongly affected by the presence of BIT nanocrystals. Analysis was performed by Fourier-transform infrared and Raman spectroscopy. Morphological studies confirmed the homogeneous dispersion of BIT particles within the polymer matrix. The composite films had dielectric constants as high as 52.8 and low dielectric loss of 0.1 at 100 Hz when the BIT content was 10 wt.%. We suggest that the enhanced electroactive phase content of the polymer matrix and interfacial polarization may contribute to the improved dielectric performance of these composite films. Dielectric modulus analysis was performed to enable understanding of the dielectric relaxation process. Non-Debye-type relaxation behavior was observed for the composite films at high temperature.

Keywords

Composites polymers dielectric properties ceramics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the Analytical Instrumentation Research Facility, Jawaharlal Nehru University (AIRF JNU) New Delhi for TEM measurement.

References

  1. 1.
    M. Arbatti, X. Shan, and Z. Cheng, Adv. Mater. 19, 1369 (2007).CrossRefGoogle Scholar
  2. 2.
    Y. Rao and C.P. Wong, J. Appl. Polym. Sci. 92, 2228 (2004).CrossRefGoogle Scholar
  3. 3.
    R.E. Newnham, Annu. Rev. Mater. Sci. 16, 47 (1986).CrossRefGoogle Scholar
  4. 4.
    Z.M. Dang, Y. Shen, and C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Bai, Z.-Y. Cheng, V. Bharti, H.S. Xu, and Q.M. Zhang, Appl. Phys. Lett. 76, 3804 (2000).CrossRefGoogle Scholar
  6. 6.
    V. Tomer, G. Polizos, E. Manias, and C.A. Randall, J. Appl. Phys. 108, 074116 (2010).CrossRefGoogle Scholar
  7. 7.
    R. Schroeder, L.A. Majewski, and M. Grell, Adv. Mater. 17, 1535 (2005).CrossRefGoogle Scholar
  8. 8.
    M. Benz and W.B. Euler, J. Appl. Polym. Sci. 89, 1093 (2003).CrossRefGoogle Scholar
  9. 9.
    R. Gregorio Jr, J. Appl. Polym. Sci. 100, 3272 (2006).CrossRefGoogle Scholar
  10. 10.
    A.J. Lovinger, Science 220, 1115 (1983).CrossRefGoogle Scholar
  11. 11.
    H.M.G. Correia and M.M.D. Ramos, Comput. Mater. Sci. 33, 224 (2005).CrossRefGoogle Scholar
  12. 12.
    J. Scheinbeim, C. Nakafuku, B.A. Newman, and K.D. Pae, J. Appl. Phys. 50, 4399 (1979).CrossRefGoogle Scholar
  13. 13.
    A.J. Lovinger, Polymer 22, 412 (1981).CrossRefGoogle Scholar
  14. 14.
    J.S. Andrew and D.R. Clarke, Langmuir 24, 670 (2008).CrossRefGoogle Scholar
  15. 15.
    A. Salimi and A.A. Yousefi, Polym. Test. 22, 699 (2003).CrossRefGoogle Scholar
  16. 16.
    W. Ma, J. Zhang, and X. Wang, J. Mater. Sci. 43, 398 (2008).CrossRefGoogle Scholar
  17. 17.
    J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B. Seyhan Ince, M. Jenkins, J. Pan, M. Reveley, N. Washington, and N. Wolchover, Polymer 47, 2411 (2006).CrossRefGoogle Scholar
  18. 18.
    D. Shah, P. Maiti, E. Gunn, D.F. Schmidt, D.D. Jiang, C.A. Batt, and E.P. Giannelis, Adv. Mater. 16, 1173 (2004).CrossRefGoogle Scholar
  19. 19.
    J.S. Andrew and D.R. Clarke, Langmuir 24, 8435 (2008).CrossRefGoogle Scholar
  20. 20.
    P. Martins, C.M. Costa, and S.L. Mendez, Appl. Phys. A 103, 233 (2011).CrossRefGoogle Scholar
  21. 21.
    B.S.I. Gunduz, R. Alpern, D. Amare, J. Crawford, B. Dolan, S. Jones, R. Kobylarz, M. Reveley, and P. Cebe, Polymer 51, 1485 (2010).CrossRefGoogle Scholar
  22. 22.
    S. Ramasundaram, S. Yoon, K.J. Kim, and C. Park, Polym. Sci. 46, 2173 (2008).CrossRefGoogle Scholar
  23. 23.
    R. Singh, R.D.P. Sinha, and S. Chandra, Ferroelectrics 120, 293 (1991).CrossRefGoogle Scholar
  24. 24.
    Z.D. Qing, W.D. Wei, Y. Jie, Z.Q. Liang, W.Z. Ying, and C.M. Sheng, Chin. Phys. Lett. 25, 4410 (2008).CrossRefGoogle Scholar
  25. 25.
    C. Ehrhardt, C. Fettkenhauer, J. Glenneberg, W. Munchgesang, H.S. Leipner, M.D. Horst, S. Lemm, H. Beige, and S.G. Ebbinghaus, J. Mater. Chem. A2, 2266 (2014).CrossRefGoogle Scholar
  26. 26.
    X. Huang, P. Jiang, and L. Xie, Appl. Phys. Lett. 95, 242901 (2009).CrossRefGoogle Scholar
  27. 27.
    R.K. Goyal and A.B. Kulkarni, J. Phys. D Appl. Phys. 45, 465302 (2012).CrossRefGoogle Scholar
  28. 28.
    G. Wang and A.C.S. Appl, Mater. Interfaces 2, 1290 (2010).CrossRefGoogle Scholar
  29. 29.
    Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, and C.W. Nan, J. Mater. Chem. 22, 8063 (2012).CrossRefGoogle Scholar
  30. 30.
    M.F. Lin, V.K. Thakur, E.J. Tanb, and P.S. Lee, RSC Adv. 1, 576 (2011).CrossRefGoogle Scholar
  31. 31.
    P.C. Joshi, A. Mansingh, M.N. Kamalasanan, and S. Chandra, Appl. Phys. Lett. 59, 2389 (1991).CrossRefGoogle Scholar
  32. 32.
    S.E. Cummins and L.E. Cross, J. Appl. Phys. 39, 2268 (1968).CrossRefGoogle Scholar
  33. 33.
    A. Kumar and K.L. Yadav, J. Alloys Compd. 528, 16 (2012).CrossRefGoogle Scholar
  34. 34.
    X.X. Wang, K.H. Lam, X.G. Tang, and H.L.W. Chan, Solid State Commun. 130, 695 (2004).CrossRefGoogle Scholar
  35. 35.
    W.F. Sua, J.F. Lee, M.Y. Chen, and R.M. Ho, J. Mater. Res. 19, 2343 (2004).CrossRefGoogle Scholar
  36. 36.
    H. Yang, Q. Ren, S. Guo, and G. Zhang, Opt. Laser Tech. 35, 291 (2005).CrossRefGoogle Scholar
  37. 37.
    H. Yang, Q. Rena, G. Zhang, Y.T. Chow, H.P. Chan, and P.L. Chu, Opt. Laser Tech. 37, 259 (2005).CrossRefGoogle Scholar
  38. 38.
    K. Han and T. Ko, J. Alloys Compd. 473, 490 (2009).CrossRefGoogle Scholar
  39. 39.
    B.D. Stojanovic, C.O.P. Santos, M. Cilense, C. Jovalekic, and Z.Z. Lazarevic, Mater. Res. Bull. 43, 1743 (2008).CrossRefGoogle Scholar
  40. 40.
    B.D. Cullity and S.R. Stock, Elements of X-ray diffraction, 3rd ed. (Upper Saddle River: Prentice Hall, 2001).Google Scholar
  41. 41.
    G.T. Davis, J.E. McKinney, M.G. Broadhurst, and S.C. Roth, J. Appl. Phys. 49, 4998 (1978).CrossRefGoogle Scholar
  42. 42.
    M. Benz, W.B. Euler, and O.J. Gregory, Langmuir 17, 239 (2001).CrossRefGoogle Scholar
  43. 43.
    T. Boccaccio, A. Bottino, G. Capannelli, and P. Piaggio, J. Membr. Sci. 210, 315 (2002).CrossRefGoogle Scholar
  44. 44.
    A. Salimi and A.A. Yousefi, Polym. Test. 22, 699 (2003).CrossRefGoogle Scholar
  45. 45.
    R. Gregorio and M. Cestari, Polym. Sci. 32, 859 (1994).CrossRefGoogle Scholar
  46. 46.
    K. Tashiro, H. Kaito, and M. Kobayashi, Polymer 33, 14 (1992).Google Scholar
  47. 47.
    M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B.V. Horn, Z. Guan, G. Chen, and R.S. Krishnan, Science 311, 1740 (2006).CrossRefGoogle Scholar
  48. 48.
    P. Martins, C. Caparros, R. Gonçalves, P.M. Martins, M. Benelmekki, G. Botelho, and S.L. Mendez, J. Phys. Chem. C 116, 15790 (2012).CrossRefGoogle Scholar
  49. 49.
    A.C. Lopes, C.M. Costa, C.J. Tavares, I.C. Neves, and S. Lanceros-Mendez, J. Phys. Chem. C 115, 18076 (2011).CrossRefGoogle Scholar
  50. 50.
    T.H. Young, D.J. Lin, J.J. Gau, W.Y. Chuang, and L.P. Cheng, Polymer 40, 5011 (1999).CrossRefGoogle Scholar
  51. 51.
    H. Neumann and G. Arlt, Ferroelectrics 69, 179 (1986).CrossRefGoogle Scholar
  52. 52.
    Z. Yua and C. Ang, J. Appl. Phys. 91, 794 (2002).CrossRefGoogle Scholar
  53. 53.
    L. Yang, J. Qiu, H. Ji, K. Zhu, and J. Wang, J. Mater. Sci.: Mater. Electron. 25, 2126 (2014).Google Scholar
  54. 54.
    K. Yu, H. Wang, Y. Zhou, Y. Bai, and Y. Niu, J. Appl. Phys. 113, 034105 (2013).CrossRefGoogle Scholar
  55. 55.
    J.C. Maxwell-Garnett, Philos. Trans. R. Soc. Lond. A 203, 385 (1904).CrossRefGoogle Scholar
  56. 56.
    G. Subodh, C. Pavithran, P. Mohanan, and M.T. Sebastian, J. Eur. Ceram. Soc. 27, 3039 (2007).CrossRefGoogle Scholar
  57. 57.
    T. Bhimasankaram, S.V. Suryanarayana, and G. Prasad, Curr. Sci. 74, 967 (1998).Google Scholar
  58. 58.
    Y. Kubouchi, Y. Kumetani, T. Yagi, T. Masusda, and A. Nakajima, Pure Appl. Chem. 61, 83 (1989).CrossRefGoogle Scholar
  59. 59.
    I.M. Hodge, M.D. Ingram, and A.R. West, J. Electroanal. Chem. 74, 125 (1976).CrossRefGoogle Scholar
  60. 60.
    M. Pant, D.K. Kanchan, and N. Gondaliya, Mater. Chem. Phys. 115, 98 (2009).CrossRefGoogle Scholar
  61. 61.
    J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, and J.R. Hardy, J. Chem. Phys. 119, 2812 (2003).CrossRefGoogle Scholar
  62. 62.
    K. Lily, K. Kumari, and R.N.P.Choudhary Prasad, J. Alloys Compd. 453, 325 (2008).CrossRefGoogle Scholar
  63. 63.
    P.S. Anantha and K. Hariharan, Mater. Sci. Eng. B 121, 12 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Sumit Bhardwaj
    • 1
    • 4
  • Joginder Paul
    • 1
  • Subhash Chand
    • 2
  • K.K. Raina
    • 3
  • Ravi Kumar
    • 1
  1. 1.Centre for Materials Science and EngineeringNational Institute of TechnologyHamirpurIndia
  2. 2.Department of PhysicsNational Institute of TechnologyHamirpurIndia
  3. 3.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  4. 4.Department of Materials and Metallurgical EngineeringPEC University of TechnologyChandigarhIndia

Personalised recommendations