Advertisement

Journal of Electronic Materials

, Volume 44, Issue 10, pp 4012–4034 | Cite as

Validation of the Dynamic Recrystallization (DRX) Mechanism for Whisker and Hillock Growth on Sn Thin Films

  • P. T. Vianco
  • M. K. Neilsen
  • J. A. Rejent
  • R. P. Grant
Article

Abstract

A study was performed to validate a first-principles model for whisker and hillock formation based on the cyclic dynamic recrystallization (DRX) mechanism in conjunction with long-range diffusion. The test specimens were evaporated Sn films on Si having thicknesses of 0.25 μm, 0.50 μm, 1.0 μm, 2.0 μm, and 4.9 μm. Air annealing was performed at 35°C, 60°C, 100°C, 120°C, or 150°C over a time duration of 9 days. The stresses, anelastic strains, and strain rates in the Sn films were predicted by a computational model based upon the constitutive properties of 95.5Sn-3.9Ag-0.6Cu (wt.%) as a surrogate for pure Sn. The cyclic DRX mechanism and, in particular, whether long whiskers or hillocks were formed, was validated by comparing the empirical data against the three hierarchal requirements: (1) DRX to occur at all: εc = A D o m Z n , (2) DRX to be cyclic: D o < 2D r, and (3) Grain boundary pinning (thin films): h versus d. Continuous DRX took place in the 2.0-μm and 4.9-μm films that resulted in short stubby whiskers. Depleted zones, which resulted solely from a tensile stress-driven diffusion mechanism, confirmed the pervasiveness of long-range diffusion so that it did not control whisker or hillock formation other than a small loss of activity by reduced thermal activation at lower temperatures. A first-principles DRX model paves the way to develop like mitigation strategies against long whisker growth.

Keywords

Sn whiskers hillocks depleted zones dynamic recrystallization (DRX) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank Mark Grazier for his development of the test fixtures and Lisa Lowery for the FIB cross-sections as well as Don Susan and Pylin Sarobol for their thorough reviews of this manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

  1. 1.
    P. Vianco and J. Rejent, J. Electron. Mater. 38, 1815 (2009).CrossRefGoogle Scholar
  2. 2.
    P. Vianco and J. Rejent, J. Electron. Mater. 38, 1826 (2009).CrossRefGoogle Scholar
  3. 3.
    T. Frolov, W. Boettinger, and Y. Mishin, Acta Mater. 58, 5471 (2010).CrossRefGoogle Scholar
  4. 4.
    E. Buchovecky, N. Du, and A. Bower, Appl. Phys. Lett. 94, 191904 (2009).CrossRefGoogle Scholar
  5. 5.
    P. Sarobol, J. Blendell, and C. Handwerker, Acta Mater. 61, 1991 (2013).CrossRefGoogle Scholar
  6. 6.
    E. Chason, N. Jadhav, F. Pei, E. Buchovecky, and A. Bower, Prog. Surf. Sci. 88, 103 (2013).CrossRefGoogle Scholar
  7. 7.
    P. Sarobol, J. Koppes, W. Chen, P. Su, J. Blendell, and C. Handwerker, Mater. Lett. 99, 76 (2013).CrossRefGoogle Scholar
  8. 8.
    W. Boettinger, C. Johnson, L. Bendersky, K.-W. Moon, M. Williams, and G. Stafford, Acta Mater. 53, 5033 (2005).CrossRefGoogle Scholar
  9. 9.
    F. Pei, N. Jadhav, and E. Chason, Appl. Phys. Lett. 100, 221902 (2012).CrossRefGoogle Scholar
  10. 10.
    J. Michael, B. McKenzie, and D. Susan, Microsc. Microanal. 17, 392 (2011).CrossRefGoogle Scholar
  11. 11.
    D. Susan, J. Michael, R. Grant, B. McKenzie, and W. Yelton, Metal. Mat. Trans. A. 43A (2012) on lineGoogle Scholar
  12. 12.
    C. Thompson and R. Carel, J. Mech. Phys. Solids 44, 657 (1996).CrossRefGoogle Scholar
  13. 13.
    M. Barnett, G. Kelly, and P. Hodgson, Scr. Mater. 43, 13 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Barnett, G. Kelly, and P. Hodgson, Metall. Mater. Trans. A 33A, 1893 (2002).Google Scholar
  15. 15.
    T. Sakai and J. Jonas, Acta Metall. 32, 189 (1984).CrossRefGoogle Scholar
  16. 16.
    F. Thijssen (PhD Thesis, Ultrecht University, 2004).Google Scholar
  17. 17.
    J. Cheng, P. Vianco, J. Subjeck, and J. Li, J. Mater. Sci. 46, 263 (2011).CrossRefGoogle Scholar
  18. 18.
    C. Hu, K. Rodbell, T. Sullivan, K. Lee, and D. Bouldin, J. Res. Dev. (IBM) 39, 465 (1995).CrossRefGoogle Scholar
  19. 19.
    M. Thouless, Ann. Rev. Mater. Sci. 25, 69 (1995).CrossRefGoogle Scholar
  20. 20.
    J. Cheng, P. Vianco, and J. Li, J. Appl. Phys. Lett. 96 (2010), Article 184102.Google Scholar
  21. 21.
    J. Cheng, S. Chen, P. Vianco, and J. Li, J. Appl. Phys. 107 (2010), Article 074902.Google Scholar
  22. 22.
    A. Fossum, P. Vianco, M. Neilsen, and D. Pierce, J. Elect. Pack. 128, 71 (2006).CrossRefGoogle Scholar
  23. 23.
    E. Thomas, Acta Meter. 4, 94 (1956).CrossRefGoogle Scholar
  24. 24.
    W. Nix and B. Clemens, J. Mater. Res. 14, 3467 (1999).CrossRefGoogle Scholar
  25. 25.
    M. Murakami and T. Kuan, Thin Solid Films 66, 381 (1980).CrossRefGoogle Scholar
  26. 26.
    G. Gottstein, Metal Sci. 17, 497 (1983).CrossRefGoogle Scholar
  27. 27.
    C.-K. Hu, K. Rodbell, T. Sullvan, K. Lee, and D. Bouldin, IBM J. Res. Dev. 39, 465 (1995).Google Scholar
  28. 28.
    C. Friesen, S. Seel, and C. Thompson, J. Appl. Phys. 95, 1011 (2004).CrossRefGoogle Scholar
  29. 29.
    C. Friesen and C. Thompson, Phys. Rev. Lett. 38 (2002), Article 126103.Google Scholar
  30. 30.
    R. Abermann and R. Koch, Thin Solid Films 129, 71 (1985).CrossRefGoogle Scholar
  31. 31.
    R. Vayrette, C. Vivero, S. Blayac, and K. Inal, Mater. Sci. Forum 681, 139 (2011).CrossRefGoogle Scholar
  32. 32.
    H. Park, D.-Y. Kim, S.-J. Hwang, and Y.-C. Joo, J. Korean Phys. Soc. 45, 1257 (2004).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the USA) 2015

Authors and Affiliations

  • P. T. Vianco
    • 1
  • M. K. Neilsen
    • 1
  • J. A. Rejent
    • 1
  • R. P. Grant
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations