Journal of Electronic Materials

, Volume 44, Issue 7, pp 2450–2457 | Cite as

Microstructure Evolution and Shear Behavior of the Solder Joints for Flip-Chip LED on ENIG Substrate

  • Yang Liu
  • Fenglian Sun
  • Liangliang Luo
  • Cadmus A. Yuan
  • Guoqi Zhang


The microstructure evolution and shear behavior of the solder joints for the flip-chip light-emitting diode on the electroless nickel/immersion gold (ENIG) substrate were investigated in this study. The experimental results reveal that the solder joints for the anode and cathode have different microstructures and failure characteristics during the shear test before and after isothermal aging. For the solder joints for the anode, the interfacial intermetallic compound (IMC) is (Au, Ni)Sn4 at the solder/anode interface but dendritic Ni3Sn4 grains at the solder/ENIG interface after reflow. Meanwhile, the dendritic Ni3Sn4 grains are surrounded by (Au, Ni)Sn4, which suppresses the growth of the Ni3Sn4 grains during aging. For the solder joints for the cathode, a nano scaled Au-rich layer can be observed near the cathode/solder layer interface after reflow. And the Au-rich layer moves toward the bulk solder because of the volume expansion by the transformation from Au into (Au, Ni)Sn4 during reflow and isothermal aging. Due to the diffusion of the Au atom from the Au-rich layer into the bulk solder, the Au-rich layer transformed into an interface inside of the solder joint. The average shear force of the solder joints shows a decrease from 380 gf to 250 gf because of the microstructure evolution during the isothermal aging for 1000 h at 85°C. After long time aging, the primary failure mode of the solder joint for the anode changed from the anode broken to the brittle failure of the solder layer. The delamination between the IMC layer and the insulation layer is suggested to be the dominated failure mode of the solder joint for the cathode after aging.


Microstructure intermetallic compounds (IMC) solder flip-chip LED 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.Y. Tsai, C.Y. Tang, C.Y. Yen, and L.B. Chang, IEEE Trans. Device Mater. Reliab. 14, 161 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Liu, S.Y.Y. Leung, J. Zhao, K.Y.W. Cell, C.A. Yuan, G.Q. Zhang, F.L. Sun, and L.L. Luo, Microelectron. Reliab. 54, 2028 (2014).CrossRefGoogle Scholar
  3. 3.
    K.C. Shen, W.Y. Lin, D.S. Wuu, S.Y. Huang, K.S. Wen, S.F. Pai, L.W. Wu, and R.H. Horng, IEEE Electron Device Lett. 34, 274 (2013).CrossRefGoogle Scholar
  4. 4.
    R.H. Horng, S.H. Chuang, C.H. Tien, S.C. Lin, and D.S. Wuu, Opt. Express 22, A941 (2014).CrossRefGoogle Scholar
  5. 5.
    M.J. Jeng, K.L. Chiang, H.Y. Chang, C.Y. Yen, C.C. Lin, Y.H. Chang, M.J. Lai, Y.L. Lee, and L.B. Chang, Microelectron. Reliab. 52, 884 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Chung, J.H. Jhang, J.S. Chen, Y.C. Lo, G.H. Ho, M.L. Wu, and C.C. Sun, Microelectron. Reliab. 52, 872 (2012).CrossRefGoogle Scholar
  7. 7.
    Z. Li, Y. Tang, X. Ding, C. Li, D. Yuan, and Y. Lu, Appl. Therm. Eng. 65, 236 (2014).CrossRefGoogle Scholar
  8. 8.
    H.H. Wu, K.H. Lin, and S.T. Lin, Microelectron. J. 43, 280 (2012).CrossRefGoogle Scholar
  9. 9.
    Y. Li and C.P. Wong, Mater. Sci. Eng. R 5, 11 (2006).Google Scholar
  10. 10.
    J.W. Kim, Y.C. Lee, and S.B. Jung, J. Electron. Mater. 37, 9 (2008).CrossRefGoogle Scholar
  11. 11.
    S.J. Wu, H.C. Hsu, S.L. Fu, and J.N. Yeh, Electron. Mater. Lett. 10, 497 (2014).CrossRefGoogle Scholar
  12. 12.
    C.P. Wang, T.T. Chen, H.K. Fu, T.L. Chang, P.T. Chou, and I.E.E.E. Trans, Electron Devices 60, 1668 (2013).CrossRefGoogle Scholar
  13. 13.
    U. Lafont, H. Zeijl, and S. Zwaag, Microelectron. Reliab. 52, 71 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Kong, S. Jeon, C. Hwang, and Y.C. Lee, J. Electron. Packag. 134, 021002 (2012).CrossRefGoogle Scholar
  15. 15.
    O. Krammer, Microelectron. Reliab. 54, 457 (2014).CrossRefGoogle Scholar
  16. 16.
    S.Q. Gao and Y.H. Zhou, Microelectron. Reliab. 53, 1137 (2013).CrossRefGoogle Scholar
  17. 17.
    Y. Liu, F.L. Sun, H. Zhang, and P. Zou, J. Mater. Sci. 23, 1705 (2012).Google Scholar
  18. 18.
    G.K. Sujan, A. Haseeb, and A.B.M. Afifi, Mater. Charact. 97, 199 (2014).CrossRefGoogle Scholar
  19. 19.
    Y. Liu, J. Zhao, C.A. Yuan, and F.L. Sun, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1754 (2014).CrossRefGoogle Scholar
  20. 20.
    J. Chen, J. Shen, W. Xie, and H. Liu, J. Mater. Sci. 22, 1703 (2011).Google Scholar
  21. 21.
    C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin, and C.R. Kao, J. Electron. Mater. 29, 1175 (2000).CrossRefGoogle Scholar
  22. 22.
    W.L. Shih, T.L. Yang, H.Y. Chuang, M.S. Kuo, and C.R. Kao, J. Electron. Mater. 43, 4262 (2014).CrossRefGoogle Scholar
  23. 23.
    M. Powers, J. Pan, J. Silk, and P. Hyland, J. Electron. Mater. 41, 224 (2012).CrossRefGoogle Scholar
  24. 24.
    J.W. Yoon, H.S. Chun, and S.B. Jung, Mater. Sci. Eng. A 483, 731 (2008).CrossRefGoogle Scholar
  25. 25.
    C. Fuchs, T. Schreck, and M. Kaloudis, J. Mater. Sci. 47, 4036 (2012).CrossRefGoogle Scholar
  26. 26.
    P. Premchander and Y.T. Lee, Asian J. Chem. 25, S482 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Yang Liu
    • 1
    • 2
    • 4
  • Fenglian Sun
    • 1
  • Liangliang Luo
    • 4
  • Cadmus A. Yuan
    • 2
    • 3
    • 4
  • Guoqi Zhang
    • 3
    • 5
  1. 1.School of Material Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Beijing Research CentreDelft University of TechnologyBeijingPeople’s Republic of China
  3. 3.Institute of SemiconductorsChinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.State Key Laboratory of Solid State LightingChangzhouPeople’s Republic of China
  5. 5.DIMES Center for SSL TechnologiesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations