Journal of Electronic Materials

, Volume 44, Issue 7, pp 2422–2431 | Cite as

Phase Equilibria of the Sn–Ni–Si Ternary System and Interfacial Reactions in Sn–(Cu)/Ni–Si Couples

Article

Abstract

Interfacial reactions in Sn/Ni–4.5 wt.%Si and Sn–Cu/Ni–4.5 wt.%Si couples at 250°C, and Sn–Ni–Si ternary phase equilibria at 250°C were investigated in this study. Ni–Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni–4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni–Si materials. No ternary compound is present in the Sn–Ni–Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni–4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni–4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni–4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

Keywords

Sn–Ni–Si phase equilibria flip chip packaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.H. Lau, Flip Chip Technologies (New York: McGraw-Hill, 1996), pp. 25–59.Google Scholar
  2. 2.
    J. Shen, Y.C. Chan, and S.Y. Liu, Acta Mater. 57, 5196 (2009).CrossRefGoogle Scholar
  3. 3.
    W.K. Liou, Y.W. Yen, and C.C. Jao, J. Electron. Mater. 38, 2222 (2009).CrossRefGoogle Scholar
  4. 4.
    S.J. Wang and C.Y. Liu, Scripta Mater. 55, 347 (2006).CrossRefGoogle Scholar
  5. 5.
    S.-W. Chen, Y.-R. Lin, H.-J. Wu, and R.-B. Chang, J. Electron. Mater. 40, 1527 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Osenbach, A. Amin, M. Bachman, F. Baiocchi, D. Bitting, and D. Crouthamel, etņal., J. Electron. Mater. 38, 303 (2009).CrossRefGoogle Scholar
  7. 7.
    G.-Y. Jang and J.-G. Duh, J. Electron. Mater. 35, 2061 (2006).CrossRefGoogle Scholar
  8. 8.
    C.-C. Chen, S.-W. Chen, and C.-H. Chang, J. Mater. Res. 23, 2743 (2008).CrossRefGoogle Scholar
  9. 9.
    S.-W. Chen, C.-C. Chen, and C.-H. Chang, Scripta Mater. 56, 453 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Hansen, in Constitution of Binary Alloys, McGraw-Hill, NewYork, 1959, 1965, 1969.Google Scholar
  11. 11.
    Y. Li, J. Chen, C. Lazik, P. Wang, L. Yang, J. Yu, T. Sun, and E. Ko, J. Mater. Res. 20, 2622 (2005).CrossRefGoogle Scholar
  12. 12.
    P. Nash and A. Nash, Binary Alloy Phase Diagrams, 2nd ed., Vol. 3, ed. B. Thaddeus and Massalski (Materials Park: ASM International, 1991), p. 2859.Google Scholar
  13. 13.
    M. Lindholm and B. Sundman, Metall. Mater. Trans. A 27A, 2897 (1996).CrossRefGoogle Scholar
  14. 14.
    L.P. Cook, R.E. Cavicchi, N. Bassim, S. Eustis, W. Wong-Ng, and I. Levin, etņal., J. Appl. Phys. 106, 104909 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Du and J.C. Schuster, Metall. Mater. Trans. A 30, 2409 (1999).CrossRefGoogle Scholar
  16. 16.
    P. Nash and A. Nash, Bull. Alloy Phase Diagr. 6, 350 (1985).CrossRefGoogle Scholar
  17. 17.
    R.W. Olesinski and G.J. Abbaschian, Binary Alloy Phase Diagrams, 2nd ed., Vol. 3, ed. B. Thaddeus and Massalski (Materials Park: ASM International, 1984), pp. 3361–3362.Google Scholar
  18. 18.
    C.-H. Lin, S.-W. Chen, and C.-H. Wang, J. Electron. Mater. 31, 907 (2002).CrossRefGoogle Scholar
  19. 19.
    C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).CrossRefGoogle Scholar
  20. 20.
    S.-W. Chen and C.-H. Wang, J. Mater. Res. 21, 2270 (2006).CrossRefGoogle Scholar
  21. 21.
    W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, and C.R. Kao, Mater. Sci. Eng., A 396, 385 (2005).CrossRefGoogle Scholar
  22. 22.
    JCPDS # 65-1315.Google Scholar
  23. 23.
    JCPDS # 65-3521.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.R&D Center for Membrane Technology and Department of Chemical EngineeringChung Yuan Christian UniversityTaoyuan CityTaiwan

Personalised recommendations