Advertisement

Journal of Electronic Materials

, Volume 44, Issue 8, pp 2898–2907 | Cite as

Tape-Assisted Transfer of Carbon Nanotube Bundles for Through-Silicon-Via Applications

  • Wei Mu
  • Shuangxi Sun
  • Di Jiang
  • Yifeng Fu
  • Michael Edwards
  • Yong Zhang
  • Kjell Jeppson
  • Johan LiuEmail author
Article

Abstract

Robust methods for transferring vertically aligned carbon nanotube (CNT) bundles into through-silicon vias (TSVs) are needed since CNT growth is not compatible with complementary metal–oxide–semiconductor (CMOS) technology due to the temperature needed for growing high-quality CNTs (∼700°C). Previous methods are either too complicated or not robust enough, thereby offering too low yields. Here, a facile transfer method using tape at room temperature is proposed and experimentally demonstrated. Three different kinds of tape, viz. thermal release tape, Teflon tape, and Scotch tape, were applied as the medium for CNT transfer. The CNT bundle was adhered to the tape through a flip-chip bonder, and the influence of the bonding process on the transfer results was investigated. Two-inch wafer-scale transfer of CNT bundles was realized with yields up to 97% demonstrated. After transfer, the use of several different polymers was explored for filling the gap between the transferred CNT bundle and the sidewalls of the TSV openings to improve the filling performance. The current–voltage characteristic of the CNT TSVs indicated good electrical performance, and by measuring the via resistance as a function of via thickness, contact resistances could be eliminated and an intrinsic CNT resistivity of 1.80 mΩ cm found.

Keywords

Carbon nanotube bundles postgrowth transfer TSV polymer filling resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by EU program “Nano-RF” (Contract No. 5920631). We also acknowledge the funding from the Swedish Strategic Science Foundation (SSF) within the frame ICT project “Carbon-Based 3D High-Speed GaN Electronic Systems” (Contract No. SE13-0061). In addition, we acknowledge the support from the Chinese National Science Foundation under Contract No. 51272153, the Chinese State Scholarship Fund (CSC), as well as the Shanghai Science and Technology Commission (STCSM) Project under Contract No. 12JC1403900. This work was also carried out within the Sustainable Production Initiative and the Production Area of Advance at Chalmers University of Technology.

References

  1. 1.
    M.S. Dresselhaus, G. Dresselhaus, J.C. Charlier, and E. Hernández, Phil. Trans. R. Soc. Lond. A 362, 2065 (2004). doi: 10.1098/rsta.2004.1430.CrossRefGoogle Scholar
  2. 2.
    J. Suehiro, G. Zhou, and M. Hara, J. Phys. D Appl. Phys. 36, L109 (2003). doi: 10.1088/0022-3727/36/21/L01.CrossRefGoogle Scholar
  3. 3.
    Zhaoyao Zhan, Chao Liu, Lianxi Zheng, Gengzhi Sun, Baosheng Li, and Qing Zhang, Phys. Chem. Chem. Phys. 13, 20471 (2011). doi: 10.1039/c1cp22340b.CrossRefGoogle Scholar
  4. 4.
    J.-M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, and N. Weiss, Carbon 40, 1715 (2002). doi: 10.1016/S0008-6223(02)00011-8.CrossRefGoogle Scholar
  5. 5.
    F. Kreup, A.P. Graham, M. Liebau, G.S. Duesberg, and R. Seidel, E. Unger. (2004). doi: 10.1109/IEDM.2004.1419261.Google Scholar
  6. 6.
    Zhao-Yao Zhan, Ya-Ni Zhang, Geng-Zhi Sun, Lian-Xi Zheng, and Kin Liao, Appl. Surf. Sci. 257, 7704 (2011). doi: 10.1016/j.apsusc.2011.04.013.CrossRefGoogle Scholar
  7. 7.
    E. Frackowiak and F. Béguin, Carbon 39, 937 (2001). doi: 10.1016/S0008-6223(00)00183-4.CrossRefGoogle Scholar
  8. 8.
    J.B.K. Law, C.K. Koo, and J.T.L. Thong, Appl. Phys. Lett. 91, 243108 (2007). doi: 10.1063/1.2824478.CrossRefGoogle Scholar
  9. 9.
    N. Chiodarelli, A. Fournier, H. Okuno, and J. Dijon, Carbon 60, 139 (2013). doi: 10.1016/j.carbon.2013.03.063.CrossRefGoogle Scholar
  10. 10.
    Hong Li, Wei Liu, Alan M. Cassell, Franz Kreupl, and Kaustav Banerjee, IEEE Trans. Electron Devices 60, 2862 (2013). doi: 10.1109/TED.2013.2275259.CrossRefGoogle Scholar
  11. 11.
    H. Ago, K. Nakamura, K.-I. Ikeda, N. Uehara, N. Ishigami, and M. Tsuji, Chem. Phys. Lett. 408, 433 (2005). doi: 10.1016/j.cplett.2005.04.054.CrossRefGoogle Scholar
  12. 12.
    S. Huang, X. Cai, and J. Liu, J. Am. Chem. Soc. 125, 5636 (2003). doi: 10.1021/ja034475c.CrossRefGoogle Scholar
  13. 13.
    Lu Jingyu, Jianmin Miao, and Leslie K. Norford, Carbon 57, 259 (2013). doi: 10.1016/j.carbon.2013.01.072.CrossRefGoogle Scholar
  14. 14.
    N. Khan and S. Hassoun, eds., Designing TSVs for 3D Integrated Circuits (New York: Springer, 2013), p. 53.Google Scholar
  15. 15.
    Teng Wang, Kejll Jeppson, Lilei Ye, and Johan Liu, Small 7, 2313 (2011). doi: 10.1002/smll.201100615.CrossRefGoogle Scholar
  16. 16.
    B.C. Kim, S. Kannan, A. Gupta, F. Mohammed, and B. Ahn, J. Nanotechnol. Eng. Med. 1, 021012 (2010). doi: 10.1115/1.4001537.CrossRefGoogle Scholar
  17. 17.
    C. Xu, H. Li, R. Suaya, and K. Banerjee, IEEE Trans. Electron Devices 57, 3405 (2010). doi: 10.1109/TED.2010.2076382.CrossRefGoogle Scholar
  18. 18.
    A.S. Budiman, C.S. Hau-Riege, W.C. Baek, C. Lor, A. Huang, H.S. Kim, G. Neubauer, J. Pak, P.R. Besser, and W.D. Nix, J. Electron. Mater. 39, 2483 (2010). doi: 10.1007/s11664-010-1356-4.CrossRefGoogle Scholar
  19. 19.
    H.A.S. Shin, B.J. Kim, J.H. Kim, S.H. Hwang, A.S. Budiman, H.Y. Son, K.Y. Byun, N. Tamura, M. Kunz, D.I. Kim, and Y.C. Joo, J. Electron. Mater. 41, 712 (2012). doi: 10.1007/s11664-012-1943-7.CrossRefGoogle Scholar
  20. 20.
    A.S. Budiman, H.-A.-S. Shin, B.-J. Kim, S.-H. Hwang, H.-Y. Son, M.-S. Suh, Q.-H. Chung, K.-Y. Byun, N. Tamura, M. Kunz, and Y.-C. Joo, Microelectron. Reliab. 52, 530 (2012). doi: 10.1016/j.microrel.2011.10.016.CrossRefGoogle Scholar
  21. 21.
    K. Chen, N. Tamura, B.C. Valek, and K.N. Tu, J. Appl. Phys. 104, 013513 (2008). doi: 10.1063/1.2952073.CrossRefGoogle Scholar
  22. 22.
    B.C. Valek, J.C. Bravman, N. Tamura, A.A. MacDowell, R.S. Celestre, H.A. Padmore, R. Spolenak, W.L. Brown, B.W. Batterman, and J.R. Patel, Appl. Phys. Lett. 81, 4168 (2002). doi: 10.1063/1.1525880.CrossRefGoogle Scholar
  23. 23.
    A.S. Budiman, N. Li, Q. Wei, J.K. Baldwin, J. Xiong, H. Luo, D. Trugman, Q.X. Jia, N. Tamura, M. Kunz, K. Chen, and A. Misra, Thin Solid Films 519, 4137 (2011). doi: 10.1016/j.tsf.2010.12.077.CrossRefGoogle Scholar
  24. 24.
    M.J. Burek, A.S. Budiman, Z. Jahed, N. Tamura, M. Kunz, S. Jin, S.M.J. Han, G. Lee, C. Zamecnik, and T.Y. Tsui, Mater. Sci. Eng. A 528, 5822 (2011). doi: 10.1016/j.msea.2011.04.019.CrossRefGoogle Scholar
  25. 25.
    B.Q. Wei, R. Vajtai, and P.M. Ajayan, Appl. Phys. Lett. 79, 1172 (2001). doi: 10.1063/1.1396632.CrossRefGoogle Scholar
  26. 26.
    T. Sultana, M.N. Alam, and M.F. Hossain, (2012). doi:  10.1109/ICECE.2012.6471485.
  27. 27.
    S. Vollebregt, F.D. Tichelaar, H. Schellevis, C.I.M. Beenakker, and R. Ishihara, Carbon 71, 249 (2014). doi: 10.1016/j.carbon.2014.01.035.CrossRefGoogle Scholar
  28. 28.
    T. Wang, B. Carlberg, M. Jönsson, G.-H. Jeong, E.E.B. Campbell, and J. Liu, Appl. Phys. Lett. 91, 093123 (2007). doi: 10.1063/1.2776849.CrossRefGoogle Scholar
  29. 29.
    Y. Fu, Y. Qin, T. Wang, S. Chen, and J. Liu, Adv. Mater. 22, 5039 (2010). doi: 10.1002/adma.201002415.CrossRefGoogle Scholar
  30. 30.
    Lingbo Zhu, Yangyang Sun, Dennis W. Hess, and Ching-Ping Wong, Nano Lett. 6, 243 (2006). doi: 10.1021/nl052183z.CrossRefGoogle Scholar
  31. 31.
    Y. Sun, L. Zhu, H. Jiang, J. Lu, W. Wang, and C.P. Wong, J. Electron. Mater. 37, 1691 (2008). doi: 10.1007/s11664-008-0533-1.CrossRefGoogle Scholar
  32. 32.
    D. Yokoyama, T. Iwasaki, T. Yoshida, H. Kawarada, S. Sato, T. Hyakushima, M. Nihei, and Y. Awano, Appl. Phys. Lett. 91, 263101 (2007). doi: 10.1063/1.2824390.CrossRefGoogle Scholar
  33. 33.
    T. Wang, K. Jeppson, N. Olofsson, E.E.B. Campbell, and J. Liu, Nanotechnology 20, 485203 (2009). doi: 10.1088/0957-4484/20/48/485203.CrossRefGoogle Scholar
  34. 34.
    T. Wang, S. Chen, D. Jiang, Y. Fu, K. Jeppson, L. Ye, and J. Liu, IEEE Electron Device Lett. 33, 420 (2012). doi: 10.1109/LED.2011.2177804.CrossRefGoogle Scholar
  35. 35.
    Y. Civale, D.S. Tezcan, H.G.G. Philipsen, F.F.C. Duval, P. Jaenen, Y. Travaly, P. Soussan, B. Swinnen, and E. Beyne, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 833 (2011). doi: 10.1109/TCPMT.2011.2125791.CrossRefGoogle Scholar
  36. 36.
    D. Jiang, T. Wang, S. Chen, L. Ye, and J. Liu, Microelectron. Eng. 103, 177 (2013). doi: 10.1016/j.mee.2012.11.007.CrossRefGoogle Scholar
  37. 37.
    J. Huang and W. Choi, Nanotechnology 19, 505601 (2008). doi: 10.1088/0957-4484/19/50/505601.CrossRefGoogle Scholar
  38. 38.
    S.C. Lim, J.H. Jang, D.J. Bae, G.H. Han, S. Lee, I.-S. Yeo, and Y.H. Lee, Appl. Phys. Lett. 95, 264103 (2009). doi: 10.1063/1.3255016.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Wei Mu
    • 1
    • 2
  • Shuangxi Sun
    • 2
  • Di Jiang
    • 2
  • Yifeng Fu
    • 3
  • Michael Edwards
    • 2
  • Yong Zhang
    • 1
    • 2
  • Kjell Jeppson
    • 2
  • Johan Liu
    • 1
    • 2
    Email author
  1. 1.SMIT Center, School of Mechanical Engineering and Automation, Key Laboratory of New Displays and System ApplicationsShanghai UniversityShanghaiChina
  2. 2.Department of Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSweden
  3. 3.SHT Smart High Tech ABGothenburgSweden

Personalised recommendations